Optimizing index for semistructured data

Liru Han, Xia-Qin Zheng, Xiao-Fang Li
{"title":"Optimizing index for semistructured data","authors":"Liru Han, Xia-Qin Zheng, Xiao-Fang Li","doi":"10.1109/ICMLC.2002.1176762","DOIUrl":null,"url":null,"abstract":"We propose a set of strategies for optimizing the index for semistructured data. For example, for optimizing the path index, we propose the Improvea algorithm for mining association rules. Also, we propose a Colv algorithm. Based on these strategies, we provide optimizing algorithms for part of the basic query operations such as merger operation, selection operation and projection operation. These algorithms can improve query efficiency.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"10 1","pages":"303-306 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a set of strategies for optimizing the index for semistructured data. For example, for optimizing the path index, we propose the Improvea algorithm for mining association rules. Also, we propose a Colv algorithm. Based on these strategies, we provide optimizing algorithms for part of the basic query operations such as merger operation, selection operation and projection operation. These algorithms can improve query efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化半结构化数据的索引
我们提出了一套优化半结构化数据索引的策略。例如,为了优化路径索引,我们提出了用于挖掘关联规则的Improvea算法。此外,我们还提出了一种Colv算法。在此基础上,对合并操作、选择操作和投影操作等部分基本查询操作提供了优化算法。这些算法可以提高查询效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary Talk: Digital-Twin Fluid Engineering APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM. The multistage support vector machine Anti-control of chaos based on fuzzy neural networks inverse system method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1