Learning Functors using Gradient Descent

Bruno Gavranovic
{"title":"Learning Functors using Gradient Descent","authors":"Bruno Gavranovic","doi":"10.4204/EPTCS.323.15","DOIUrl":null,"url":null,"abstract":"Neural networks are a general framework for differentiable optimization which includes many other machine learning approaches as special cases. In this paper we build a category-theoretic formalism around a neural network system called CycleGAN. CycleGAN is a general approach to unpaired image-to-image translation that has been getting attention in the recent years. Inspired by categorical database systems, we show that CycleGAN is a \"schema\", i.e. a specific category presented by generators and relations, whose specific parameter instantiations are just set-valued functors on this schema. We show that enforcing cycle-consistencies amounts to enforcing composition invariants in this category. We generalize the learning procedure to arbitrary such categories and show a special class of functors, rather than functions, can be learned using gradient descent. Using this framework we design a novel neural network system capable of learning to insert and delete objects from images without paired data. We qualitatively evaluate the system on the CelebA dataset and obtain promising results.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"8 1","pages":"230-245"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.323.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Neural networks are a general framework for differentiable optimization which includes many other machine learning approaches as special cases. In this paper we build a category-theoretic formalism around a neural network system called CycleGAN. CycleGAN is a general approach to unpaired image-to-image translation that has been getting attention in the recent years. Inspired by categorical database systems, we show that CycleGAN is a "schema", i.e. a specific category presented by generators and relations, whose specific parameter instantiations are just set-valued functors on this schema. We show that enforcing cycle-consistencies amounts to enforcing composition invariants in this category. We generalize the learning procedure to arbitrary such categories and show a special class of functors, rather than functions, can be learned using gradient descent. Using this framework we design a novel neural network system capable of learning to insert and delete objects from images without paired data. We qualitatively evaluate the system on the CelebA dataset and obtain promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用梯度下降学习函子
神经网络是可微优化的一般框架,它包括许多其他机器学习方法作为特殊情况。在本文中,我们围绕一个叫做CycleGAN的神经网络系统建立了一个范畴论的形式化系统。CycleGAN是近年来备受关注的一种通用的非配对图像到图像翻译方法。受分类数据库系统的启发,我们证明了CycleGAN是一个“模式”,即由生成器和关系表示的特定类别,其特定参数实例化只是该模式上的集值函子。我们证明,在这个范畴中,强制循环一致性等同于强制组合不变量。我们将学习过程推广到任意这样的类别,并展示了一类特殊的函子,而不是函数,可以使用梯度下降来学习。利用这个框架,我们设计了一个新的神经网络系统,能够在没有配对数据的情况下学习从图像中插入和删除对象。我们在CelebA数据集上对系统进行了定性评估,并获得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Canonical Gradings of Monads Proceedings Fifth International Conference on Applied Category Theory, ACT 2022, Glasgow, United Kingdom, 18-22 July 2022 Polynomial Life: the Structure of Adaptive Systems Grounding Game Semantics in Categorical Algebra Jacobians and Gradients for Cartesian Differential Categories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1