High performance cluster computing with 3-D nonlinear diffusion filters

Andrés Bruhn , Tobias Jakob , Markus Fischer , Timo Kohlberger , Joachim Weickert , Ulrich Brüning , Christoph Schnörr
{"title":"High performance cluster computing with 3-D nonlinear diffusion filters","authors":"Andrés Bruhn ,&nbsp;Tobias Jakob ,&nbsp;Markus Fischer ,&nbsp;Timo Kohlberger ,&nbsp;Joachim Weickert ,&nbsp;Ulrich Brüning ,&nbsp;Christoph Schnörr","doi":"10.1016/j.rti.2003.12.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper deals with parallelization<span> and implementation aspects of partial differential equation (PDE)-based image processing models for large cluster environments with distributed memory. As an example we focus on nonlinear diffusion filtering<span> which we discretize by means of an additive operator splitting (AOS). We start by decomposing the algorithm into small modules that shall be parallelized separately. For this purpose image partitioning strategies are discussed and their impact on the communication pattern and volume is analyzed. Based on the results we develop an algorithmic implementation with excellent scaling properties on massively connected low-latency networks. Test runs on two different high-end Myrinet clusters yield almost linear speedup factors up to 209 for 256 processors. This results in typical denoising times of </span></span></span><span><math><mtext>0.4</mtext><mspace></mspace><mtext>s</mtext></math></span> for five iterations on a 256×256×128 data cube.</p></div>","PeriodicalId":101062,"journal":{"name":"Real-Time Imaging","volume":"10 1","pages":"Pages 41-51"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rti.2003.12.002","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077201404000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper deals with parallelization and implementation aspects of partial differential equation (PDE)-based image processing models for large cluster environments with distributed memory. As an example we focus on nonlinear diffusion filtering which we discretize by means of an additive operator splitting (AOS). We start by decomposing the algorithm into small modules that shall be parallelized separately. For this purpose image partitioning strategies are discussed and their impact on the communication pattern and volume is analyzed. Based on the results we develop an algorithmic implementation with excellent scaling properties on massively connected low-latency networks. Test runs on two different high-end Myrinet clusters yield almost linear speedup factors up to 209 for 256 processors. This results in typical denoising times of 0.4s for five iterations on a 256×256×128 data cube.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维非线性扩散滤波器的高性能集群计算
本文研究了基于偏微分方程(PDE)的图像处理模型的并行化和实现问题,该模型适用于具有分布式内存的大型集群环境。以非线性扩散滤波为例,采用加性算子分裂(AOS)对其进行离散化。我们首先将算法分解成小的模块,这些模块将分别并行化。为此,讨论了图像分割策略,并分析了它们对通信模式和容量的影响。基于这些结果,我们开发了一种算法实现,在大规模连接的低延迟网络上具有出色的扩展特性。在两个不同的高端Myrinet集群上运行的测试产生了几乎线性的加速因子,256个处理器的加速因子高达209。这导致在256×256×128数据立方体上进行5次迭代的典型去噪时间为0.4s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fast impulsive noise color image filter using fuzzy metrics Least-squares smoothing of 3D digital curves Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature A cost-effective encryption scheme for color images Real-time acquisition of depth and color images using structured light and its application to 3D face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1