M Falouti, H Ellouzi, F Bounaouara, N Farhat, A M Aggag, A Debez, M Rabhi, C Abdelly, I Slama, W Zorrig
{"title":"Higher activity of PSI compared to PSII accounts for the beneficial effect of silicon on barley (<i>Hordeum vulgare</i> L.) plants challenged with salinity.","authors":"M Falouti, H Ellouzi, F Bounaouara, N Farhat, A M Aggag, A Debez, M Rabhi, C Abdelly, I Slama, W Zorrig","doi":"10.32615/ps.2022.031","DOIUrl":null,"url":null,"abstract":"<p><p>This study was conducted to assess whether silicon (Si) supply can alleviate the harmful effects of severe salinity in barley (<i>Hordeum vulgare</i>). Plants were grown on non-saline (0 mM NaCl) or saline (200 mM NaCl) nutrient media supplemented or not with 0.5 mM Si. Salinity impacted plant morphology and induced sodium and chloride accumulation within plant tissues. It significantly affected almost all measured parameters. Interestingly, Si supply alleviated salt stress effects on plant morphology, growth (up to +59%), water status (up to +74%), membrane integrity (up to +35%), pigment contents (up to +121%), and the activity of the two photosystems (PSI and PSII) by improving their yields, and by reducing their energy dissipation. Si beneficial effect was more pronounced on PSI as compared to PSII. As a whole, data inferred from the present study further confirmed that silicon application is an effective approach to cope with salinity.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"8 1","pages":"508-520"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2022.031","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study was conducted to assess whether silicon (Si) supply can alleviate the harmful effects of severe salinity in barley (Hordeum vulgare). Plants were grown on non-saline (0 mM NaCl) or saline (200 mM NaCl) nutrient media supplemented or not with 0.5 mM Si. Salinity impacted plant morphology and induced sodium and chloride accumulation within plant tissues. It significantly affected almost all measured parameters. Interestingly, Si supply alleviated salt stress effects on plant morphology, growth (up to +59%), water status (up to +74%), membrane integrity (up to +35%), pigment contents (up to +121%), and the activity of the two photosystems (PSI and PSII) by improving their yields, and by reducing their energy dissipation. Si beneficial effect was more pronounced on PSI as compared to PSII. As a whole, data inferred from the present study further confirmed that silicon application is an effective approach to cope with salinity.
本研究旨在评估硅(Si)的供应是否可以缓解大麦(Hordeum vulgare)严重盐度的有害影响。植株分别生长在不含盐(0 mM NaCl)和含盐(200 mM NaCl)的营养培养基上,分别添加或不添加0.5 mM Si。盐度影响植物形态,诱导植物组织内钠和氯的积累。它显著影响了几乎所有的测量参数。有趣的是,通过提高产量和减少能量耗散,Si的供应减轻了盐胁迫对植物形态、生长(高达+59%)、水分状况(高达+74%)、膜完整性(高达+35%)、色素含量(高达+121%)和两个光系统(PSI和PSII)活性的影响。Si对PSI的有益作用比PSII更明显。综上所述,本研究推断的数据进一步证实了硅的应用是应对盐度的有效途径。
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.