Developing big ocean system in support of Sustainable Development Goals: challenges and countermeasures

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2021-09-02 DOI:10.1080/20964471.2021.1965371
Bin Zhang, Fuchao Li, Gang Zheng, Yanjun Wang, Zhetao Tan, Xiaofeng Li
{"title":"Developing big ocean system in support of Sustainable Development Goals: challenges and countermeasures","authors":"Bin Zhang, Fuchao Li, Gang Zheng, Yanjun Wang, Zhetao Tan, Xiaofeng Li","doi":"10.1080/20964471.2021.1965371","DOIUrl":null,"url":null,"abstract":"ABSTRACT The ocean is a critical part of the global ecosystem. The marine ecosystem balance is crucial for human survival and sustainable development. However, due to the impacts of global climate change and human activities, the ocean is rapidly changing, which poses an enormous threat to human health and the economy. “Conserve and sustainably use the oceans, seas and marine resources” is one of the 17 Sustainable Development Goals (SDGs). Therefore, it is urgent to construct a transformative marine scientific solution to promote sustainable development. Marine data is the basis of ocean cognition and governance. Marine science has ushered in the era of big data with continuous advances in modern marine data acquisition. While big data provides a large amount of data for SDG research, it simultaneously brings unprecedented challenges. This study introduces an overall framework of a system for solving the current problems faced by marine data serving SDGs from the perspective of marine data management and application. Also, it articulates how the system helps the SDGs through two application cases of managing fragmented marine data and developing global climate change data products.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"27 1","pages":"557 - 575"},"PeriodicalIF":4.2000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1965371","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 8

Abstract

ABSTRACT The ocean is a critical part of the global ecosystem. The marine ecosystem balance is crucial for human survival and sustainable development. However, due to the impacts of global climate change and human activities, the ocean is rapidly changing, which poses an enormous threat to human health and the economy. “Conserve and sustainably use the oceans, seas and marine resources” is one of the 17 Sustainable Development Goals (SDGs). Therefore, it is urgent to construct a transformative marine scientific solution to promote sustainable development. Marine data is the basis of ocean cognition and governance. Marine science has ushered in the era of big data with continuous advances in modern marine data acquisition. While big data provides a large amount of data for SDG research, it simultaneously brings unprecedented challenges. This study introduces an overall framework of a system for solving the current problems faced by marine data serving SDGs from the perspective of marine data management and application. Also, it articulates how the system helps the SDGs through two application cases of managing fragmented marine data and developing global climate change data products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发展大洋系统以支持可持续发展目标:挑战与对策
海洋是全球生态系统的重要组成部分。海洋生态系统平衡对人类生存和可持续发展至关重要。然而,由于全球气候变化和人类活动的影响,海洋正在迅速变化,这对人类健康和经济构成了巨大威胁。“保护和可持续利用海洋和海洋资源”是17项可持续发展目标之一。因此,迫切需要构建变革性的海洋科学解决方案,以促进可持续发展。海洋数据是海洋认知和治理的基础。随着现代海洋数据采集技术的不断进步,海洋科学迎来了大数据时代。大数据在为可持续发展目标研究提供大量数据的同时,也带来了前所未有的挑战。本研究从海洋数据管理与应用的角度,介绍了解决当前海洋数据服务可持续发展目标所面临问题的系统总体框架。此外,本文还通过管理零散的海洋数据和开发全球气候变化数据产品这两个应用案例,阐述了该系统如何帮助实现可持续发展目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1