Tengfei Zhan, M. Ye, Wen-Wen Jiang, Yongjie Li, Kaifu Yang
{"title":"Fixation Prediction based on Scene Contours","authors":"Tengfei Zhan, M. Ye, Wen-Wen Jiang, Yongjie Li, Kaifu Yang","doi":"10.1109/SSCI44817.2019.9002897","DOIUrl":null,"url":null,"abstract":"Previous works suggest that scene contours play important roles in guiding visual attention. In this study, a computational model is proposed to improve the performance in visual saliency prediction by integrating the low- and mid-level visual cues and evaluate the contribution of scene contours in guiding visual attention. Firstly, we define three kinds of Gestalt principles based on mid-level cues, including contour density, closure, and symmetry to characterize the potential salient regions. In addition, we employ the classical bottom-up methods to generate low-level saliency maps. Finally, the proposed method combines the low-level cues from natural images and the mid-level cues from the corresponding contours to improve the fixation prediction. Experimental results show that the contour-based midlevel cues can remarkably improve the performance of the bottomup models in fixation prediction.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"12 1","pages":"2548-2554"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Previous works suggest that scene contours play important roles in guiding visual attention. In this study, a computational model is proposed to improve the performance in visual saliency prediction by integrating the low- and mid-level visual cues and evaluate the contribution of scene contours in guiding visual attention. Firstly, we define three kinds of Gestalt principles based on mid-level cues, including contour density, closure, and symmetry to characterize the potential salient regions. In addition, we employ the classical bottom-up methods to generate low-level saliency maps. Finally, the proposed method combines the low-level cues from natural images and the mid-level cues from the corresponding contours to improve the fixation prediction. Experimental results show that the contour-based midlevel cues can remarkably improve the performance of the bottomup models in fixation prediction.