{"title":"Performance analysis of ultra-dense networks with elevated base stations","authors":"Italo Atzeni, Jesús Arnau, M. Kountouris","doi":"10.23919/WIOPT.2017.7959927","DOIUrl":null,"url":null,"abstract":"This paper analyzes the downlink performance of ultra-dense networks with elevated base stations (BSs). We consider a general dual-slope pathloss model with distance-dependent probability of line-of-sight (LOS) transmission between BSs and receivers. Specifically, we consider the scenario where each link may be obstructed by randomly placed buildings. Using tools from stochastic geometry, we show that both coverage probability and area spectral efficiency decay to zero as the BS density grows large. Interestingly, we show that the BS height alone has a detrimental effect on the system performance even when the standard single-slope pathloss model is adopted.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper analyzes the downlink performance of ultra-dense networks with elevated base stations (BSs). We consider a general dual-slope pathloss model with distance-dependent probability of line-of-sight (LOS) transmission between BSs and receivers. Specifically, we consider the scenario where each link may be obstructed by randomly placed buildings. Using tools from stochastic geometry, we show that both coverage probability and area spectral efficiency decay to zero as the BS density grows large. Interestingly, we show that the BS height alone has a detrimental effect on the system performance even when the standard single-slope pathloss model is adopted.