Inaugural Editorial. Can We Achieve Our Mission: Fast, Accessible, Cutting-edge, and Top-quality?

Colin O. Wu, Ming-Hui Chen, Min-ge Xie, HaiYing Wang, Jing Wu
{"title":"Inaugural Editorial. Can We Achieve Our Mission: Fast, Accessible, Cutting-edge, and Top-quality?","authors":"Colin O. Wu, Ming-Hui Chen, Min-ge Xie, HaiYing Wang, Jing Wu","doi":"10.51387/23-nejsds11edi","DOIUrl":null,"url":null,"abstract":"We are pleased to launch the first issue of the New England Journal of Statistics in Data Science (NEJSDS). NEJSDS is the official journal of the New England Statistical Society (NESS) under the leadership of Vice President for Journal and Publication and sponsored by the College of Liberal Arts and Sciences, University of Connecticut. The aims of the journal are to serve as an interface between statistics and other disciplines in data science, to encourage researchers to exchange innovative ideas, and to promote data science methods to the general scientific community. The journal publishes high quality original research, novel applications, and timely review articles in all aspects of data science, including all areas of statistical methodology, methods of machine learning, and artificial intelligence, novel algorithms, computational methods, data management and manipulation, applications of data science methods, among others. We encourage authors to submit collaborative work driven by real life problems posed by researchers, administrators, educators, or other stakeholders, and which require original and innovative solutions from data scientists.","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/23-nejsds11edi","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are pleased to launch the first issue of the New England Journal of Statistics in Data Science (NEJSDS). NEJSDS is the official journal of the New England Statistical Society (NESS) under the leadership of Vice President for Journal and Publication and sponsored by the College of Liberal Arts and Sciences, University of Connecticut. The aims of the journal are to serve as an interface between statistics and other disciplines in data science, to encourage researchers to exchange innovative ideas, and to promote data science methods to the general scientific community. The journal publishes high quality original research, novel applications, and timely review articles in all aspects of data science, including all areas of statistical methodology, methods of machine learning, and artificial intelligence, novel algorithms, computational methods, data management and manipulation, applications of data science methods, among others. We encourage authors to submit collaborative work driven by real life problems posed by researchers, administrators, educators, or other stakeholders, and which require original and innovative solutions from data scientists.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
就职社论。我们能否实现我们的使命:快速、便捷、前沿、高品质?
我们很高兴推出第一期新英格兰数据科学统计杂志(NEJSDS)。NEJSDS是新英格兰统计学会(NESS)的官方期刊,由康涅狄格大学文理学院主办,由杂志和出版副主席领导。该杂志的目标是充当统计学与数据科学其他学科之间的接口,鼓励研究人员交流创新思想,并向一般科学界推广数据科学方法。该杂志在数据科学的各个方面发表高质量的原创研究,新颖的应用和及时的评论文章,包括统计方法学的所有领域,机器学习方法,人工智能,新颖算法,计算方法,数据管理和操作,数据科学方法的应用等。我们鼓励作者提交由研究人员、管理人员、教育工作者或其他利益相关者提出的现实生活问题驱动的协作工作,这些问题需要数据科学家提供原创和创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Multivariate Spatial Dependencies Using Graphical Models. Effect of model space priors on statistical inference with model uncertainty. Bayesian Variable Selection in Double Generalized Linear Tweedie Spatial Process Models Bayesian D-Optimal Design of Experiments with Quantitative and Qualitative Responses Construction of Supersaturated Designs with Small Coherence for Variable Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1