Exploring Long Running News Stories using Wikipedia

Jaspreet Singh, Abhijith Anand, Vinay Setty, Avishek Anand
{"title":"Exploring Long Running News Stories using Wikipedia","authors":"Jaspreet Singh, Abhijith Anand, Vinay Setty, Avishek Anand","doi":"10.1145/2786451.2786489","DOIUrl":null,"url":null,"abstract":"A significant portion of today's news articles are part of long running stories. To better understand the context of these stories journalists, social scientists and other scholars use news collections to find temporal and topical insights. However these insights are devoid of user impressions, derived from click-through data and query logs, and are only reliable if the collection is complete and consistent. In this work we introduce the notion of combining user impressions from Wikipedia with news collection based insights for long running news story exploration and outline promising new research directions. We also demonstrate our initial attempts with a prototype system called NewsEX.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786451.2786489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A significant portion of today's news articles are part of long running stories. To better understand the context of these stories journalists, social scientists and other scholars use news collections to find temporal and topical insights. However these insights are devoid of user impressions, derived from click-through data and query logs, and are only reliable if the collection is complete and consistent. In this work we introduce the notion of combining user impressions from Wikipedia with news collection based insights for long running news story exploration and outline promising new research directions. We also demonstrate our initial attempts with a prototype system called NewsEX.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用维基百科探索长时间运行的新闻故事
今天的新闻文章中有很大一部分是长篇故事的一部分。为了更好地理解这些故事的背景,记者、社会科学家和其他学者使用新闻收集来寻找时间和主题的见解。然而,这些见解缺乏用户印象,来自点击数据和查询日志,只有在收集完整和一致的情况下才可靠。在这项工作中,我们介绍了将来自维基百科的用户印象与基于新闻收集的见解相结合的概念,以进行长期新闻故事的探索,并概述了有前途的新研究方向。我们还用一个名为NewsEX的原型系统演示了我们最初的尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opinions on Homeopathy for COVID-19 on Twitter. An Initial Study of Depression Detection on Mandarin Textual through BERT Model WebSci '22: 14th ACM Web Science Conference 2022, Barcelona, Spain, June 26 - 29, 2022 WebSci '21: 13th ACM Web Science Conference 2021, Virtual Event, United Kingdom, 21-25 June, 2021, Companion Publication In conversation with Martha Lane Fox and Wendy Hall on the Future of the Internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1