Application of MS-WHIM Descriptors: 3. Prediction of Molecular Properties

G. Bravi, J. Wikel
{"title":"Application of MS-WHIM Descriptors: 3. Prediction of Molecular Properties","authors":"G. Bravi, J. Wikel","doi":"10.1002/(SICI)1521-3838(200002)19:1<39::AID-QSAR39>3.0.CO;2-N","DOIUrl":null,"url":null,"abstract":"MS-WHIM descriptors were developed in attempt to capture global 3D chemical information at molecular surface level. Initially, they contained information about size, shape and electrostatic distribution of a molecule. More recently they were enriched introducing new molecular surface properties related to hydrogen bonding capacity and hydrophobicity. This paper reports the application of expanded MS-WHIM descriptors to model: i) logP of 268 small organic molecules, ii) Caco-2 cell permeability of 17 heterogeneous compounds, and iii) pKa values of 15 substituted imidazoles. PLS regressions were derived and validated through cross-validation, repeated scrambling of the response variables, and test set predictions. The analysis of PLS models showed that MS-WHIM provided meaningful structure-property correlations: i) q2=0.709, ii) q2=0.797, and iii) q2=0.728. Hydrogen bonding capacity and hydrophobicity played a significant role and considerably improved the results. MS-WHIM descriptors, due to their holistic character, appear to be usefully applicable to a wide variety of chemical and biological problems.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1521-3838(200002)19:1<39::AID-QSAR39>3.0.CO;2-N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

MS-WHIM descriptors were developed in attempt to capture global 3D chemical information at molecular surface level. Initially, they contained information about size, shape and electrostatic distribution of a molecule. More recently they were enriched introducing new molecular surface properties related to hydrogen bonding capacity and hydrophobicity. This paper reports the application of expanded MS-WHIM descriptors to model: i) logP of 268 small organic molecules, ii) Caco-2 cell permeability of 17 heterogeneous compounds, and iii) pKa values of 15 substituted imidazoles. PLS regressions were derived and validated through cross-validation, repeated scrambling of the response variables, and test set predictions. The analysis of PLS models showed that MS-WHIM provided meaningful structure-property correlations: i) q2=0.709, ii) q2=0.797, and iii) q2=0.728. Hydrogen bonding capacity and hydrophobicity played a significant role and considerably improved the results. MS-WHIM descriptors, due to their holistic character, appear to be usefully applicable to a wide variety of chemical and biological problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MS-WHIM描述符的应用:分子性质预测
MS-WHIM描述符的开发是为了在分子表面水平上捕获全球三维化学信息。最初,它们包含有关分子的大小、形状和静电分布的信息。最近,它们被丰富了,引入了与氢键能力和疏水性有关的新的分子表面性质。本文报道了扩展MS-WHIM描述符的应用:i) 268个有机小分子的logP, ii) 17个非均相化合物的caco2细胞通透性,iii) 15个取代咪唑的pKa值。PLS回归通过交叉验证、响应变量的重复置乱和测试集预测来推导和验证。PLS模型分析表明,MS-WHIM提供了有意义的结构-性能相关性:i) q2=0.709, ii) q2=0.797, iii) q2=0.728。氢键能力和疏水性起着重要作用,并显著改善了结果。MS-WHIM描述符由于其整体性,似乎可以有效地适用于各种各样的化学和生物问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstracts of publications related to QASR Mechanistic Study on N‐Demethylation Catalyzed with P450 by Quantitative Structure Activity Relationship using Electronic Properties of 4‐Substituted N,N‐Dimethylaniline 3D QSAR of Serotonin Transporter Ligands: CoMFA and CoMSIA Studies Scaffold Searching: Automated Identification of Similar Ring Systems for the Design of Combinatorial Libraries Theoretical Prediction of the Phenoxyl Radical Formation Capacity and Cyclooxygenase Inhibition Relationships by Phenolic Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1