Carlos Alberto Barrera Diaz, Tehseen Aslam, Amos H. C. Ng, Erik Flores-García, Magnus Wiktorsson
{"title":"Simulation-Based Multi-Objective Optimization for Reconfigurable Manufacturing System Configurations Analysis","authors":"Carlos Alberto Barrera Diaz, Tehseen Aslam, Amos H. C. Ng, Erik Flores-García, Magnus Wiktorsson","doi":"10.1109/WSC48552.2020.9383902","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to analyze the use of Simulation-Based Multi-Objective Optimization (SMO) for Reconfigurable Manufacturing System Configuration Analysis (RMS-CA). In doing so, this study addresses the need for efficiently performing RMS-CA with respect to the limited time for decision-making in the industry, and investigates one of the salient problems of RMS-CA: determining the minimum number of machines necessary to satisfy the demand. The study adopts an NSGA II optimization algorithm and presents two contributions to existing literature. Firstly, the study proposes a series of steps for the use of SMO for RMS-CA and shows how to simultaneously maximize production throughput, minimize lead time, and buffer size. Secondly, the study presents a qualitative comparison with the prior work in RMS-CA and the proposed use of SMO; it discusses the advantages and challenges of using SMO and provides critical insight for production engineers and managers responsible for production system configuration.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"62 1","pages":"1527-1538"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The purpose of this study is to analyze the use of Simulation-Based Multi-Objective Optimization (SMO) for Reconfigurable Manufacturing System Configuration Analysis (RMS-CA). In doing so, this study addresses the need for efficiently performing RMS-CA with respect to the limited time for decision-making in the industry, and investigates one of the salient problems of RMS-CA: determining the minimum number of machines necessary to satisfy the demand. The study adopts an NSGA II optimization algorithm and presents two contributions to existing literature. Firstly, the study proposes a series of steps for the use of SMO for RMS-CA and shows how to simultaneously maximize production throughput, minimize lead time, and buffer size. Secondly, the study presents a qualitative comparison with the prior work in RMS-CA and the proposed use of SMO; it discusses the advantages and challenges of using SMO and provides critical insight for production engineers and managers responsible for production system configuration.