Simulation-Based Multi-Objective Optimization for Reconfigurable Manufacturing System Configurations Analysis

Carlos Alberto Barrera Diaz, Tehseen Aslam, Amos H. C. Ng, Erik Flores-García, Magnus Wiktorsson
{"title":"Simulation-Based Multi-Objective Optimization for Reconfigurable Manufacturing System Configurations Analysis","authors":"Carlos Alberto Barrera Diaz, Tehseen Aslam, Amos H. C. Ng, Erik Flores-García, Magnus Wiktorsson","doi":"10.1109/WSC48552.2020.9383902","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to analyze the use of Simulation-Based Multi-Objective Optimization (SMO) for Reconfigurable Manufacturing System Configuration Analysis (RMS-CA). In doing so, this study addresses the need for efficiently performing RMS-CA with respect to the limited time for decision-making in the industry, and investigates one of the salient problems of RMS-CA: determining the minimum number of machines necessary to satisfy the demand. The study adopts an NSGA II optimization algorithm and presents two contributions to existing literature. Firstly, the study proposes a series of steps for the use of SMO for RMS-CA and shows how to simultaneously maximize production throughput, minimize lead time, and buffer size. Secondly, the study presents a qualitative comparison with the prior work in RMS-CA and the proposed use of SMO; it discusses the advantages and challenges of using SMO and provides critical insight for production engineers and managers responsible for production system configuration.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"62 1","pages":"1527-1538"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The purpose of this study is to analyze the use of Simulation-Based Multi-Objective Optimization (SMO) for Reconfigurable Manufacturing System Configuration Analysis (RMS-CA). In doing so, this study addresses the need for efficiently performing RMS-CA with respect to the limited time for decision-making in the industry, and investigates one of the salient problems of RMS-CA: determining the minimum number of machines necessary to satisfy the demand. The study adopts an NSGA II optimization algorithm and presents two contributions to existing literature. Firstly, the study proposes a series of steps for the use of SMO for RMS-CA and shows how to simultaneously maximize production throughput, minimize lead time, and buffer size. Secondly, the study presents a qualitative comparison with the prior work in RMS-CA and the proposed use of SMO; it discusses the advantages and challenges of using SMO and provides critical insight for production engineers and managers responsible for production system configuration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于仿真的可重构制造系统构型分析多目标优化
本研究的目的是分析基于仿真的多目标优化(SMO)在可重构制造系统配置分析(RMS-CA)中的应用。在此过程中,本研究解决了在有限的行业决策时间内有效执行RMS-CA的需求,并研究了RMS-CA的一个突出问题:确定满足需求所需的最小机器数量。本研究采用NSGA II优化算法,对已有文献有两方面的贡献。首先,该研究提出了在RMS-CA中使用SMO的一系列步骤,并展示了如何同时最大化生产吞吐量,最小化交货时间和缓冲区大小。其次,本研究对RMS-CA的前期工作和SMO的建议使用进行了定性比较;它讨论了使用SMO的优势和挑战,并为负责生产系统配置的生产工程师和管理人员提供了关键的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Précis: The Emotional Mind: The Affective Roots of Culture and Cognition Emotional Correctness Robot Collaboration Intelligence with AI Evaluation and Selection of Hospital Layout Based on an Integrated Simulation Method A Simheuristic Approach for Robust Scheduling of Airport Turnaround Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1