J. P. Degel, S. Haehnlein, Lars Boschert, Christian Kloeffer, M. Doppelbauer
{"title":"Extended algorithm for current slope estimation in inverter fed synchronous machines","authors":"J. P. Degel, S. Haehnlein, Lars Boschert, Christian Kloeffer, M. Doppelbauer","doi":"10.1109/ECTIDAMTNCON57770.2023.10139562","DOIUrl":null,"url":null,"abstract":"The present work describes an extension of current slope estimation for parameter estimation of permanent magnet synchronous machines operated at inverters. The area of operation for current slope estimation in the individual switching states of the inverter is limited due to measurement noise, bandwidth limitation of the current sensors and the commutation processes of the inverter's switching operations. Therefore, a minimum duration of each switching state is necessary, limiting the final area of operation of a robust current slope estimation. This paper presents an extension of existing current slope estimation algorithms resulting in a greater area of operation and a more robust estimation result.","PeriodicalId":38808,"journal":{"name":"Transactions on Electrical Engineering, Electronics, and Communications","volume":"107 1","pages":"273-278"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Electrical Engineering, Electronics, and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTIDAMTNCON57770.2023.10139562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The present work describes an extension of current slope estimation for parameter estimation of permanent magnet synchronous machines operated at inverters. The area of operation for current slope estimation in the individual switching states of the inverter is limited due to measurement noise, bandwidth limitation of the current sensors and the commutation processes of the inverter's switching operations. Therefore, a minimum duration of each switching state is necessary, limiting the final area of operation of a robust current slope estimation. This paper presents an extension of existing current slope estimation algorithms resulting in a greater area of operation and a more robust estimation result.