{"title":"Classical Physics-based Renewable and Sustainable Energy Transition Concept","authors":"A. Blanovsky","doi":"10.11648/J.AJMP.20211004.13","DOIUrl":null,"url":null,"abstract":"By many accounts, Lorentz was ahead of his time by suggesting before quantum mechanics that some disturbances, like waves, travel with particles through a vacuum without moving it. The waves associated with the Lorentz metrics are described by the Klein-Gordon equation and dispersion relation w2=c2k2+wc2. In hydromechanics, they are known as non-propagating waves and wc is a constant called the cutoff frequency. The waves are not propagating if their frequency is below the cutoff frequency wc. Their group and phase velocity are related by vu=c2, in the infinite k limit v=u=c. A quantum object is considered as a particle moving in resonance with wave characterized by the Klein-Gordon dispersion relation with cutoff or Compton frequencywc=mc2/ħ. This approach brings field values (group velocity and intensity of transverse non-propagating waves) into Maxwell's equations, and antiparticles or non-propagating waves with negative group velocity into Newtonian mechanics. In classical astrophysics, matter-antimatter interactions led to the universe expansion, formation of galaxiesand sources of intense cosmic radiation. Classical field theory could play a major role in clean energy research. In particular, concentrating solar power (CSP) systems, i.e. Stirling engine (SE) or small direct-heated tower, with thermal energy storage (TES), diffuse light-utilizing photovoltaic (PV) cell and 3D-printed thermal field emission (TFE) converters will dramatically lower the cost and energy payback time of the CSP technologies. The design explores recent developments in field-effect PV cells. 3D-printed TFE panels-integrated in TES or micro-channel solar receivers. The improved performance of the TFE converter compared to photovoltaic cells at high temperatures is attributed to the simultaneous use of diffusion and ballistic electron transport to harvest both thermal and photon energy. In addition, a gas cooled water moderated reactor is explored to integrate electrical-in-nature nuclear energy into smart micro-grids. and convert the most hazardous wastes into an emission-free fuel and medical isotopes. Transmutation reactor, in which depleted uranium acts initially as an absorber and later as fuel, behaves like fast reactors, but without their difficult control problems and high fissile fuel load.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJMP.20211004.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
By many accounts, Lorentz was ahead of his time by suggesting before quantum mechanics that some disturbances, like waves, travel with particles through a vacuum without moving it. The waves associated with the Lorentz metrics are described by the Klein-Gordon equation and dispersion relation w2=c2k2+wc2. In hydromechanics, they are known as non-propagating waves and wc is a constant called the cutoff frequency. The waves are not propagating if their frequency is below the cutoff frequency wc. Their group and phase velocity are related by vu=c2, in the infinite k limit v=u=c. A quantum object is considered as a particle moving in resonance with wave characterized by the Klein-Gordon dispersion relation with cutoff or Compton frequencywc=mc2/ħ. This approach brings field values (group velocity and intensity of transverse non-propagating waves) into Maxwell's equations, and antiparticles or non-propagating waves with negative group velocity into Newtonian mechanics. In classical astrophysics, matter-antimatter interactions led to the universe expansion, formation of galaxiesand sources of intense cosmic radiation. Classical field theory could play a major role in clean energy research. In particular, concentrating solar power (CSP) systems, i.e. Stirling engine (SE) or small direct-heated tower, with thermal energy storage (TES), diffuse light-utilizing photovoltaic (PV) cell and 3D-printed thermal field emission (TFE) converters will dramatically lower the cost and energy payback time of the CSP technologies. The design explores recent developments in field-effect PV cells. 3D-printed TFE panels-integrated in TES or micro-channel solar receivers. The improved performance of the TFE converter compared to photovoltaic cells at high temperatures is attributed to the simultaneous use of diffusion and ballistic electron transport to harvest both thermal and photon energy. In addition, a gas cooled water moderated reactor is explored to integrate electrical-in-nature nuclear energy into smart micro-grids. and convert the most hazardous wastes into an emission-free fuel and medical isotopes. Transmutation reactor, in which depleted uranium acts initially as an absorber and later as fuel, behaves like fast reactors, but without their difficult control problems and high fissile fuel load.