Studying the Effects of Adding Silica Sand Nanoparticles on Epoxy Based Composites

T. Ahmad, O. Mamat, R. Ahmad
{"title":"Studying the Effects of Adding Silica Sand Nanoparticles on Epoxy Based Composites","authors":"T. Ahmad, O. Mamat, R. Ahmad","doi":"10.1155/2013/603069","DOIUrl":null,"url":null,"abstract":"The research about the preparation of submicron inorganic particles, once conducted in the past decade, is now leading to prepare polymer matrix composite (PMC) reinforced with nanofillers. The objective of present research is to study the modified effects of reinforcement dispersion of nanoparticle silica in epoxy resin on the physical properties, mechanical and thermal behaviour, and the microstructure of resultant composites. Stirrer mixing associated with manual mixing of silica sand nanoparticles (developed in our earlier research) (Ahmad and Mamat, 2012) into epoxy was followed by curing being the adopted technique to develop the subject nanocomposites. Experimental values showed that 15 wt.% addition of silica sand nanoparticles improves Young’s modulus of the composites; however, a reduction in tensile strength was also observed. Number of holes and cavities produced due to improper mixing turn out to be the main cause of effected mechanical properties. Addition of silica sand nanoparticles causes a reduction in degree of crystallinity of the nanocomposites as being observed in differential scanning calorimetry (DSC) analysis.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"314 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/603069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

The research about the preparation of submicron inorganic particles, once conducted in the past decade, is now leading to prepare polymer matrix composite (PMC) reinforced with nanofillers. The objective of present research is to study the modified effects of reinforcement dispersion of nanoparticle silica in epoxy resin on the physical properties, mechanical and thermal behaviour, and the microstructure of resultant composites. Stirrer mixing associated with manual mixing of silica sand nanoparticles (developed in our earlier research) (Ahmad and Mamat, 2012) into epoxy was followed by curing being the adopted technique to develop the subject nanocomposites. Experimental values showed that 15 wt.% addition of silica sand nanoparticles improves Young’s modulus of the composites; however, a reduction in tensile strength was also observed. Number of holes and cavities produced due to improper mixing turn out to be the main cause of effected mechanical properties. Addition of silica sand nanoparticles causes a reduction in degree of crystallinity of the nanocomposites as being observed in differential scanning calorimetry (DSC) analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米二氧化硅砂对环氧基复合材料的影响研究
制备亚微米无机粒子的研究在过去的十年中一直处于主导地位,现在正在制备纳米填料增强的聚合物基复合材料(PMC)。本研究的目的是研究纳米二氧化硅在环氧树脂中的增强分散体对复合材料的物理性能、力学和热行为以及微观结构的改性作用。将硅砂纳米颗粒(在我们早期的研究中开发)(Ahmad和Mamat, 2012)手动混合到环氧树脂中,然后采用搅拌混合的方法进行固化,从而开发出纳米复合材料。实验值表明:15wt。纳米硅砂的加入提高了复合材料的杨氏模量;然而,拉伸强度的降低也被观察到。由于搅拌不当而产生的孔洞和空腔是影响材料力学性能的主要原因。在差示扫描量热法(DSC)分析中观察到,硅砂纳米颗粒的加入导致纳米复合材料结晶度的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and Investigation of Antimicrobial Activity of Cu2O Nanoparticles/Zeolite Synthesis and Characterization of Cockle Shell-Based Calcium Carbonate Aragonite Polymorph Nanoparticles with Surface Functionalization Dispersion of Titanium Oxide Nanoparticles in Aqueous Solution with Anionic Stabilizer via Ultrasonic Wave Effect of Uniformly and Nonuniformly Coated Al2O3 Nanoparticles over Glass Tube Heater on Pool Boiling Vitis vinifera Assisted Silver Nanoparticles with Antibacterial and Antiproliferative Activity against Ehrlich Ascites Carcinoma Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1