Web Bot Detection System Based on Divisive Clustering and K-Nearest Neighbor Using Biostatistics Features Set

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2021-11-01 DOI:10.4018/ijdcf.302136
Rizwan Ur Rahman, D. Tomar
{"title":"Web Bot Detection System Based on Divisive Clustering and K-Nearest Neighbor Using Biostatistics Features Set","authors":"Rizwan Ur Rahman, D. Tomar","doi":"10.4018/ijdcf.302136","DOIUrl":null,"url":null,"abstract":"Web bots are destructive programs that automatically fill the web form and steal the data from web sites. According to numerous web bot traffic reports, web bots traffic comprises of more than fifty percent of the total web traffic. An effective guard against the stealing of the data from web sites and automated web form is to identify and confirm the human user presence on web sites. In this paper, an efficient k-Nearest Neighbor algorithm using hierarchical clustering for web bot detection is proposed. Proposed technique exploits a novel taxonomy of web bot features known as Biostatistics Features. Numerous attack scenarios for web bot attacks such as automatic account registration, automatic form filling, bulk message posting, and web scrapping are created to imitate the zero-day web bot attacks. The proposed technique is evaluated with number of experiments using standard evaluation parameters. The experimental result analysis demonstrates that the proposed technique is extremely efficient in differentiating human users from web bots.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.302136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Web bots are destructive programs that automatically fill the web form and steal the data from web sites. According to numerous web bot traffic reports, web bots traffic comprises of more than fifty percent of the total web traffic. An effective guard against the stealing of the data from web sites and automated web form is to identify and confirm the human user presence on web sites. In this paper, an efficient k-Nearest Neighbor algorithm using hierarchical clustering for web bot detection is proposed. Proposed technique exploits a novel taxonomy of web bot features known as Biostatistics Features. Numerous attack scenarios for web bot attacks such as automatic account registration, automatic form filling, bulk message posting, and web scrapping are created to imitate the zero-day web bot attacks. The proposed technique is evaluated with number of experiments using standard evaluation parameters. The experimental result analysis demonstrates that the proposed technique is extremely efficient in differentiating human users from web bots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物统计特征集的分裂聚类和k近邻网络机器人检测系统
网络机器人是一种破坏性的程序,它会自动填写网页表单并从网站窃取数据。根据大量的网络机器人流量报告,网络机器人流量占网络总流量的50%以上。识别和确认网站上是否存在人类用户,是防止从网站和自动表单窃取数据的有效方法。本文提出了一种基于层次聚类的高效k近邻网络机器人检测算法。提出的技术利用了一种新的网络机器人特征分类,称为生物统计特征。为了模仿零日网络机器人攻击,创建了许多网络机器人攻击场景,如自动帐户注册、自动表单填写、批量消息发布和web废弃。采用标准评价参数对所提出的技术进行了多次实验评价。实验结果分析表明,该方法在区分人类用户和网络机器人方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1