Expedition 372B/375 summary

D. Saffer, L. Wallace, P. Barnes, I. Pecher, K. Petronotis, L. Levay, R. Bell, M. Crundwell, C. H. Engelmann de Oliveira, Å. Fagereng, P. Fulton, A. Greve, R. Harris, Y. Hashimoto, A. Hüpers, M. Ikari, Y. Ito, H. Kitajima, S. Kutterolf, H. Lee, X. Li, M. Luo, P. Malie, F. Meneghini, J. Morgan, A. Noda, H. Rabinowitz, H. M. Savage, C. Shepherd, S. Shreedharan, E. Solomon, M. Underwood, M. Wang, A. Woodhouse, S. Bourlange, M. Brunet, S. Cardona, M. Clennell, A. E. Cook, B. Dugan, J. Elger, D. Gamboa, A. Georgiopoulou, S. Han, K. Heeschen, G. Hu, G. Kim, H. Koge, K. Machado, D. Mcnamara, G. Moore, J. Mountjoy, M. Nole, S. Owari, M. Paganoni, P. Rose, E. Screaton, U. Shankar, M. Torres, X. Wang, H. Wu
{"title":"Expedition 372B/375 summary","authors":"D. Saffer, L. Wallace, P. Barnes, I. Pecher, K. Petronotis, L. Levay, R. Bell, M. Crundwell, C. H. Engelmann de Oliveira, Å. Fagereng, P. Fulton, A. Greve, R. Harris, Y. Hashimoto, A. Hüpers, M. Ikari, Y. Ito, H. Kitajima, S. Kutterolf, H. Lee, X. Li, M. Luo, P. Malie, F. Meneghini, J. Morgan, A. Noda, H. Rabinowitz, H. M. Savage, C. Shepherd, S. Shreedharan, E. Solomon, M. Underwood, M. Wang, A. Woodhouse, S. Bourlange, M. Brunet, S. Cardona, M. Clennell, A. E. Cook, B. Dugan, J. Elger, D. Gamboa, A. Georgiopoulou, S. Han, K. Heeschen, G. Hu, G. Kim, H. Koge, K. Machado, D. Mcnamara, G. Moore, J. Mountjoy, M. Nole, S. Owari, M. Paganoni, P. Rose, E. Screaton, U. Shankar, M. Torres, X. Wang, H. Wu","doi":"10.14379/IODP.PROC.372B375.101.2019","DOIUrl":null,"url":null,"abstract":"Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. \n \nNorthern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate to the trench, indicating that the shallow thrust fault (the Pāpaku fault) targeted during Expeditions 372 and 375 may also lie in the SSE rupture area and host a portion of the slip in these events. Hence, sampling and logging at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. \n \nExpeditions 372 and 375 were designed to address three fundamental scientific objectives: \n \n Characterize the state and composition of the incoming plate and shallow fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; \n Characterize material properties, thermal regime, and stress conditions in the upper plate directly above the SSE source region; and \n Install observatories in the Pāpaku fault near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. \n \nTogether, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface.","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Ocean Discovery Program","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14379/IODP.PROC.372B375.101.2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate to the trench, indicating that the shallow thrust fault (the Pāpaku fault) targeted during Expeditions 372 and 375 may also lie in the SSE rupture area and host a portion of the slip in these events. Hence, sampling and logging at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expeditions 372 and 375 were designed to address three fundamental scientific objectives: Characterize the state and composition of the incoming plate and shallow fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; Characterize material properties, thermal regime, and stress conditions in the upper plate directly above the SSE source region; and Install observatories in the Pāpaku fault near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
远征372B/375总结
新西兰北部Hikurangi俯冲边缘的慢滑事件(sse)是地球上记录最好的浅层sse之一。国际海洋发现计划的第372号和第375号考察队负责调查Hikurangi海槽北部俯冲带sse的过程和现场条件。为了实现这一目标,我们在四个测点进行了取心和地球物理测井,包括变形前沿附近的一条活动逆冲断层(Pāpaku断层)的侵彻,SSE源区上方的上板块,以及Hikurangi海槽和Tūranganui Knoll海山顶部的传入沉积序列;(2)在Pāpaku断裂带和慢滑震源上覆板块设置钻孔观测台。该项目的随钻测井(LWD)数据是远征372的一部分,在远征375期间进行了取心、电缆测井和观测装置。北Hikurangi俯冲边缘的sse每隔1-2 y就会出现一次,因此为监测整个慢滑旋回的变形和相关的化学和物理性质变化提供了理想的机会。从俯冲板块的沉积剖面和大洋基底进行的现场测量和物质取样,揭示了向下输送到SSE源区的物质的岩石性质、组成、岩性和结构特征。最近的海底大地测量实验表明,Hikurangi北部的SSE可能会传播到海沟,这表明372和375探险期间所针对的浅层逆冲断层(Pāpaku断层)也可能位于SSE破裂区,并在这些事件中产生部分滑动。因此,在这个位置进行采样和测井,可以深入了解可能存在慢滑的浅层断层的组成、物理性质和结构。372号和375号科考旨在解决三个基本的科学目标:描述进入的板块和靠近海沟的浅层断层的状态和组成,它们构成了更深层断层带岩石的原岩和初始条件,并且本身可能承载浅层慢滑;表征SSE源区域正上方的上板的材料特性、热状态和应力条件;在靠近变形前沿的Pāpaku断层和SSE震源上方的上板块设置观测台,测量变形、温度和流体流量的时间变化。观测站将监测整个SSE循环的体积应变(通过孔隙压力作为代理)以及物理、水文和化学性质的演变。岩心、测井和观测数据将共同检验一系列关于sse的基本力学和行为以及它们与俯冲界面沿线大地震的关系的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iberian Margin Paleoclimate South Atlantic Transect Japan Trench Paleoseismology Walvis Ridge Hotspot Agulhas Plateau Cretaceous Climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1