An improved particle swarm optimizer for IIR digital filter design

Xuzhen Zhang, Pingui Jia, Junying Guo
{"title":"An improved particle swarm optimizer for IIR digital filter design","authors":"Xuzhen Zhang, Pingui Jia, Junying Guo","doi":"10.1109/ISKE.2010.5680821","DOIUrl":null,"url":null,"abstract":"This paper proposed an improved particle swarm optimization (PSO) algorithm called redistributing PSO (RPSO) for designing IIR digital filters. The proposed RPSO avoids the stagnation problem by automatically triggering particles redistributing when premature convergence is detected. Every particle is redistributed either within the whole problem space or around the mean between the global best and its current position. This mechanism helps particles escape from local convergence regions and continue progress toward true global optimum. The simulation results of low-pass and band-pass filters show that RPSO is better than PSO, quantum particle swarm optimization (QPSO), chaos particle swarm optimization (CPSO), and differential cultural (DC) algorithm with better mean performance and more stability and is an efficient method for IIR digital filter design.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"57 1","pages":"191-196"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper proposed an improved particle swarm optimization (PSO) algorithm called redistributing PSO (RPSO) for designing IIR digital filters. The proposed RPSO avoids the stagnation problem by automatically triggering particles redistributing when premature convergence is detected. Every particle is redistributed either within the whole problem space or around the mean between the global best and its current position. This mechanism helps particles escape from local convergence regions and continue progress toward true global optimum. The simulation results of low-pass and band-pass filters show that RPSO is better than PSO, quantum particle swarm optimization (QPSO), chaos particle swarm optimization (CPSO), and differential cultural (DC) algorithm with better mean performance and more stability and is an efficient method for IIR digital filter design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于IIR数字滤波器设计的改进粒子群优化算法
提出了一种改进的粒子群优化算法——重分配粒子群优化算法,用于IIR数字滤波器的设计。提出的RPSO通过在检测到过早收敛时自动触发粒子重新分配来避免停滞问题。每个粒子要么在整个问题空间内重新分布,要么在全局最佳值与其当前位置之间的平均值周围重新分布。这一机制帮助粒子脱离局部收敛区,继续向真正的全局最优发展。低通滤波器和带通滤波器的仿真结果表明,RPSO算法优于粒子群算法、量子粒子群算法(QPSO)、混沌粒子群算法(CPSO)和差分文化算法(DC),具有更好的平均性能和稳定性,是一种有效的IIR数字滤波器设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying B and ProB to a Real-world Data Validation Project A Method of Point Cloud Processing in Transformer Substation Computational Task Offloading Scheme based on Deep Learning for Financial Big Data A Feasible System of Automatic Flame Detection and Tracking for Fire-fighting Robot Design of Parallel Algorithm of Transfer Learning based on Weak Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1