{"title":"Stationary and multi-self-similar random fields with stochastic volatility","authors":"Almut E. D. Veraart","doi":"10.1080/17442508.2015.1012081","DOIUrl":null,"url":null,"abstract":"This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"32 1","pages":"848 - 870"},"PeriodicalIF":0.8000,"publicationDate":"2014-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2015.1012081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.
期刊介绍:
Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects.
Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly.
In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.