Kun Ren, Thaddeus Diamond, D. Abadi, Alexander Thomson
{"title":"Low-Overhead Asynchronous Checkpointing in Main-Memory Database Systems","authors":"Kun Ren, Thaddeus Diamond, D. Abadi, Alexander Thomson","doi":"10.1145/2882903.2915966","DOIUrl":null,"url":null,"abstract":"As it becomes increasingly common for transaction processing systems to operate on datasets that fit within the main memory of a single machine or a cluster of commodity machines, traditional mechanisms for guaranteeing transaction durability---which typically involve synchronous log flushes---incur increasingly unappealing costs to otherwise lightweight transactions. Many applications have turned to periodically checkpointing full database state. However, existing checkpointing methods---even those which avoid freezing the storage layer---often come with significant costs to operation throughput, end-to-end latency, and total memory usage. This paper presents Checkpointing Asynchronously using Logical Consistency (CALC), a lightweight, asynchronous technique for capturing database snapshots that does not require a physical point of consistency to create a checkpoint, and avoids conspicuous latency spikes incurred by other database snapshotting schemes. Our experiments show that CALC can capture frequent checkpoints across a variety of transactional workloads with extremely small cost to transactional throughput and low additional memory usage compared to other state-of-the-art checkpointing systems.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2915966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
As it becomes increasingly common for transaction processing systems to operate on datasets that fit within the main memory of a single machine or a cluster of commodity machines, traditional mechanisms for guaranteeing transaction durability---which typically involve synchronous log flushes---incur increasingly unappealing costs to otherwise lightweight transactions. Many applications have turned to periodically checkpointing full database state. However, existing checkpointing methods---even those which avoid freezing the storage layer---often come with significant costs to operation throughput, end-to-end latency, and total memory usage. This paper presents Checkpointing Asynchronously using Logical Consistency (CALC), a lightweight, asynchronous technique for capturing database snapshots that does not require a physical point of consistency to create a checkpoint, and avoids conspicuous latency spikes incurred by other database snapshotting schemes. Our experiments show that CALC can capture frequent checkpoints across a variety of transactional workloads with extremely small cost to transactional throughput and low additional memory usage compared to other state-of-the-art checkpointing systems.