Query Optimization in Relevance Feedback Using Hybrid GA-PSO for Effective Web Information Retrieval

Siti Nurkhadijah Aishah Ibrahim, A. Selamat, Md. Hafiz Selamat
{"title":"Query Optimization in Relevance Feedback Using Hybrid GA-PSO for Effective Web Information Retrieval","authors":"Siti Nurkhadijah Aishah Ibrahim, A. Selamat, Md. Hafiz Selamat","doi":"10.1109/AMS.2009.95","DOIUrl":null,"url":null,"abstract":"Due to the rapid growth of web pages available on the Internet recently, searching a relevant and up-to-date information has become a crucial issue. Conventional search engines use heuristics to determine which web pages are the best match for a given keyword. Results are obtained from a database that is located at their local server to provide fast searching. However, to search for the relevant and related information needed is still difficult and tedious. By using the genetic algorithm (GA) in relevance feedback, this paper presents a model of hybrid GA-Particle Swarm Optimization (HGAPSO) based query optimization for Web information retrieval. We expanded the keywords to produce the new keywords that are related to the user search. Experimental results demonstrate that it is very effective to improve the search of the relevant web pages using the HGAPSO.","PeriodicalId":6461,"journal":{"name":"2009 Third Asia International Conference on Modelling & Simulation","volume":"5 1","pages":"91-96"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third Asia International Conference on Modelling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2009.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Due to the rapid growth of web pages available on the Internet recently, searching a relevant and up-to-date information has become a crucial issue. Conventional search engines use heuristics to determine which web pages are the best match for a given keyword. Results are obtained from a database that is located at their local server to provide fast searching. However, to search for the relevant and related information needed is still difficult and tedious. By using the genetic algorithm (GA) in relevance feedback, this paper presents a model of hybrid GA-Particle Swarm Optimization (HGAPSO) based query optimization for Web information retrieval. We expanded the keywords to produce the new keywords that are related to the user search. Experimental results demonstrate that it is very effective to improve the search of the relevant web pages using the HGAPSO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合GA-PSO的关联反馈查询优化Web信息检索
近年来,由于互联网上可用网页的快速增长,搜索相关的最新信息已成为一个至关重要的问题。传统的搜索引擎使用启发式来确定哪些网页是给定关键字的最佳匹配。结果从位于本地服务器上的数据库获得,以提供快速搜索。然而,搜索所需的相关信息仍然是困难和繁琐的。将遗传算法应用于相关反馈中,提出了一种基于遗传算法和粒子群算法的Web信息检索查询优化模型。我们扩展关键字,以产生与用户搜索相关的新关键字。实验结果表明,利用HGAPSO算法可以有效地提高相关网页的搜索效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transparent Classification Model Using a Hybrid Soft Computing Method Study on the Performance of Tag-Tag Collision Avoidance Algorithms in RFID Systems Cross Layer Design of Wireless LAN for Telemedicine Application Jawi Character Speech-to-Text Engine Using Linear Predictive and Neural Network for Effective Reading Advances in Supply Chain Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1