Sentiment Analysis for the Social Media: A Case Study for Turkish General Elections

E. Uysal, Semih Yumusak, Kasim Oztoprak, Erdogan Dogdu
{"title":"Sentiment Analysis for the Social Media: A Case Study for Turkish General Elections","authors":"E. Uysal, Semih Yumusak, Kasim Oztoprak, Erdogan Dogdu","doi":"10.1145/3077286.3077569","DOIUrl":null,"url":null,"abstract":"The ideas expressed in social media are not always compliant with natural language rules, and the mood and emotion indicators are mostly highlighted by emoticons and emotion specific keywords. There are language independent emotion keywords (e.g. love, hate, good, bad), besides every language has its own particular emotion specific keywords. These keywords can be used for polarity analysis for a particular sentence. In this study, we first created a Turkish dictionary containing emotion specific keywords. Then, we used this dictionary to detect the polarity of tweets that are collected by querying political keywords right before the Turkish general election in 2015. The tweets were collected based on their relatedness with three main categories: the political leaders, ideologies, and political parties. The polarity of these tweets are analyzed in comparison with the election results.","PeriodicalId":91384,"journal":{"name":"Proceedings of the 2014 ACM Southeast Regional Conference","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM Southeast Regional Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077286.3077569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The ideas expressed in social media are not always compliant with natural language rules, and the mood and emotion indicators are mostly highlighted by emoticons and emotion specific keywords. There are language independent emotion keywords (e.g. love, hate, good, bad), besides every language has its own particular emotion specific keywords. These keywords can be used for polarity analysis for a particular sentence. In this study, we first created a Turkish dictionary containing emotion specific keywords. Then, we used this dictionary to detect the polarity of tweets that are collected by querying political keywords right before the Turkish general election in 2015. The tweets were collected based on their relatedness with three main categories: the political leaders, ideologies, and political parties. The polarity of these tweets are analyzed in comparison with the election results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体的情绪分析:以土耳其大选为例
社交媒体中表达的思想并不总是符合自然语言规则,情绪和情感指标大多是通过表情符号和情感特定关键词来突出的。有语言独立的情感关键词(如爱、恨、好、坏),而且每种语言都有自己特定的情感关键词。这些关键词可以用于特定句子的极性分析。在这项研究中,我们首先创建了一个包含情感特定关键词的土耳其语词典。然后,我们使用该词典来检测2015年土耳其大选前通过查询政治关键词收集的推文的极性。这些推文是根据与政治领导人、意识形态、政党等3个主要类别的关系收集的。将这些推文的极性与选举结果进行比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ClearCommPrivacy DIP Bluu ReDPro ACM SE '22: 2022 ACM Southeast Conference, Virtual Event, April 18 - 20, 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1