{"title":"A Monod-based model of attached-growth anaerobic fermenters","authors":"J.P. Bolte , D.T. Hill","doi":"10.1016/0269-7483(90)90085-7","DOIUrl":null,"url":null,"abstract":"<div><p>A simple mathematical model of steady-state attached-growth anaerobic fermenter kinetics is described. The model considers a single methanogenic culture following Monod growth kinetics. The model accounts for effects of influent biodegradability and volatile solids concentration, temperature and hydraulic retention time, and predicts volumetric methane productivity and volatile solids reduction. It is distinguished from conventional suspended-growth reactor models by its explicit consideration of bacterial concentration in the reactor system, based on hydraulic flow and influent volatile solids concentration. The model was validated using data from both porous- and solid-media attached-growth fermenters.</p></div>","PeriodicalId":100177,"journal":{"name":"Biological Wastes","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0269-7483(90)90085-7","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Wastes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0269748390900857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A simple mathematical model of steady-state attached-growth anaerobic fermenter kinetics is described. The model considers a single methanogenic culture following Monod growth kinetics. The model accounts for effects of influent biodegradability and volatile solids concentration, temperature and hydraulic retention time, and predicts volumetric methane productivity and volatile solids reduction. It is distinguished from conventional suspended-growth reactor models by its explicit consideration of bacterial concentration in the reactor system, based on hydraulic flow and influent volatile solids concentration. The model was validated using data from both porous- and solid-media attached-growth fermenters.