C. Tocho, Ezequiel D. Antokoletz, Agustín R. Gómez, H. Guagni, D. Piñón
{"title":"Analysis of high-resolution global gravity field models for the estimation of International Height Reference System (IHRS) coordinates in Argentina","authors":"C. Tocho, Ezequiel D. Antokoletz, Agustín R. Gómez, H. Guagni, D. Piñón","doi":"10.1515/jogs-2022-0139","DOIUrl":null,"url":null,"abstract":"Abstract Following the definition and realization of the International Height Reference System (IHRS), the vertical coordinate of a given point at the Earth’s surface can be obtained from the computation of the geopotential value from a harmonic expansion of a Global Gravity Model of High-Resolution (GGM-HR) or based on the computation of a local or regional pure gravimetric geoid or quasigeoid. Therefore, an evaluation of the accuracy of GGMs-HR and the geoid model available is needed in order to assess its capability to infer IHRS coordinates. In this study, different GGMs-HR are evaluated against 2287 benchmarks in Argentina. Moreover, the most recent geoid model of Argentina is also evaluated. Geoid undulations at these benchmarks are obtained based on ellipsoidal and orthometric heights in the local vertical datum. Results suggest that among the evaluated GGMs-HR, XGM2019e provides the best agreement with the observed geoid heights, but none of them is accurate enough in order to infer vertical coordinates in the IHRS. Similar conclusions are obtained for the local geoid model for Argentina demonstrating the necessity for a more precise geoid model, following the standards and recommendations given for the IHRS.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"32 1","pages":"131 - 140"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2022-0139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Following the definition and realization of the International Height Reference System (IHRS), the vertical coordinate of a given point at the Earth’s surface can be obtained from the computation of the geopotential value from a harmonic expansion of a Global Gravity Model of High-Resolution (GGM-HR) or based on the computation of a local or regional pure gravimetric geoid or quasigeoid. Therefore, an evaluation of the accuracy of GGMs-HR and the geoid model available is needed in order to assess its capability to infer IHRS coordinates. In this study, different GGMs-HR are evaluated against 2287 benchmarks in Argentina. Moreover, the most recent geoid model of Argentina is also evaluated. Geoid undulations at these benchmarks are obtained based on ellipsoidal and orthometric heights in the local vertical datum. Results suggest that among the evaluated GGMs-HR, XGM2019e provides the best agreement with the observed geoid heights, but none of them is accurate enough in order to infer vertical coordinates in the IHRS. Similar conclusions are obtained for the local geoid model for Argentina demonstrating the necessity for a more precise geoid model, following the standards and recommendations given for the IHRS.