Whole Body Human-Robot Collision Detection Using Base-sensor Neuroadaptive Interaction

S. Das, Indika B. Wijayasinghe, M. Saadatzi, D. Popa
{"title":"Whole Body Human-Robot Collision Detection Using Base-sensor Neuroadaptive Interaction","authors":"S. Das, Indika B. Wijayasinghe, M. Saadatzi, D. Popa","doi":"10.1109/COASE.2018.8560360","DOIUrl":null,"url":null,"abstract":"Conventional methods to detect collisions or physical interaction between robots and human users and/or the environment consist of torque sensing at joints. In the case of non-collaborative robots, collision detection can be accomplished by wrist Force-Torque sensing at the end-effector, or covering the robot with pressure sensitive skin sensors. In this paper we present a novel approach to detect whole-body collisions with a robot manipulator equipped with a base force-torque sensor (BFTS), instead of a wrist force-torque sensor (WFTS). Our approach is summarized in the Base-sensor Assisted Physical Interaction (BAPI) controller described here. Although several other studies have investigated the advantages of this sensing configuration in conjunction with classical model-based computed torque controllers, here we make use of a Neuro-Adaptive controller (NAC) that can estimate the robot dynamic parameters on-line, for high performance interaction. The NAC requires no prior physical knowledge of the robot model parameters, and it offers Lyapunov stability and tracking performance guarantees. We offer the theoretical basis of the BAPI control algorithm and present experimental results with a 6 degrees of freedom (DOF) robot arm demonstrating the effectiveness of our approach.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"69 1","pages":"278-283"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Conventional methods to detect collisions or physical interaction between robots and human users and/or the environment consist of torque sensing at joints. In the case of non-collaborative robots, collision detection can be accomplished by wrist Force-Torque sensing at the end-effector, or covering the robot with pressure sensitive skin sensors. In this paper we present a novel approach to detect whole-body collisions with a robot manipulator equipped with a base force-torque sensor (BFTS), instead of a wrist force-torque sensor (WFTS). Our approach is summarized in the Base-sensor Assisted Physical Interaction (BAPI) controller described here. Although several other studies have investigated the advantages of this sensing configuration in conjunction with classical model-based computed torque controllers, here we make use of a Neuro-Adaptive controller (NAC) that can estimate the robot dynamic parameters on-line, for high performance interaction. The NAC requires no prior physical knowledge of the robot model parameters, and it offers Lyapunov stability and tracking performance guarantees. We offer the theoretical basis of the BAPI control algorithm and present experimental results with a 6 degrees of freedom (DOF) robot arm demonstrating the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基础传感器神经自适应交互的人-机器人全身碰撞检测
检测机器人与人类用户和/或环境之间的碰撞或物理交互的传统方法包括关节处的扭矩传感。在非协作机器人的情况下,碰撞检测可以通过末端执行器的手腕力-扭矩传感来完成,或者在机器人上覆盖压力敏感的皮肤传感器。在本文中,我们提出了一种新的方法来检测全身碰撞的机器人机械手配备了基础力-扭矩传感器(BFTS),而不是手腕力-扭矩传感器(WFTS)。我们的方法总结在这里描述的基础传感器辅助物理交互(BAPI)控制器。尽管其他一些研究已经研究了这种传感配置与经典的基于模型的计算扭矩控制器的优势,但在这里,我们使用了一种神经自适应控制器(NAC),它可以在线估计机器人的动态参数,以实现高性能的交互。NAC不需要事先了解机器人模型参数的物理知识,它提供了Lyapunov稳定性和跟踪性能保证。我们提供了BAPI控制算法的理论基础,并给出了6自由度机械臂的实验结果,证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1