{"title":"Role of Senescence-Resumed Proliferation in Keloid Pathogenesis","authors":"Ching-Yun Wang, Chieh-Wen Wu, Ting-Yi Lin","doi":"10.3390/futurepharmacol3010014","DOIUrl":null,"url":null,"abstract":"Senescence-resumed proliferation (SRP) is proposed to be a mechanism associated with the escape of p21-mediated senescence and the activation of Wnt/β-catenin pathways that enhance malignancy. The keloid genomic landscape shows heavy intersections between TP53 and TGF-β signaling. The machinery to maintain cellular integrity through senescence, apoptosis, and autophagy is co-regulated with stemness, hedgehog, and immunomodulation. Our study demonstrated the presence of SRP and how, on the transcriptome level, TP53 and Wnt/β-catenin pathways are regulated to deliver the same cellular fate. Our study proves that SRP co-regulated with senescence-associated reprogramming (Wnt/β-catenin pathways) and TP53-p21 dysregulations originate from a common etiology and present a novel therapeutic target opportunity.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/futurepharmacol3010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Senescence-resumed proliferation (SRP) is proposed to be a mechanism associated with the escape of p21-mediated senescence and the activation of Wnt/β-catenin pathways that enhance malignancy. The keloid genomic landscape shows heavy intersections between TP53 and TGF-β signaling. The machinery to maintain cellular integrity through senescence, apoptosis, and autophagy is co-regulated with stemness, hedgehog, and immunomodulation. Our study demonstrated the presence of SRP and how, on the transcriptome level, TP53 and Wnt/β-catenin pathways are regulated to deliver the same cellular fate. Our study proves that SRP co-regulated with senescence-associated reprogramming (Wnt/β-catenin pathways) and TP53-p21 dysregulations originate from a common etiology and present a novel therapeutic target opportunity.