{"title":"Image Registration Method from LDCT Image Using FFD Algorithm","authors":"Chika Tanaka, Tohru Kamiya, T. Aoki","doi":"10.23919/ICCAS50221.2020.9268267","DOIUrl":null,"url":null,"abstract":"In recent years, the number of lung cancer deaths has been increasing. In Japan, CT (Computed Tomography) equipment is used for its visual screening. However, there is a problem that seeing huge number of images taken by CT is a burden on the doctor. To overcome this problem, the CAD (Computer Aided Diagnosis) system is introduced on medical fields. In CT screening, LDCT (Low Dose Computed Tomography) screening is desirable considering radiation exposure. However, the image quality which is caused the lower the dose is another problem on the screening. A CAD system that enables accurate diagnosis even at low doses is needed. Therefore, in this paper, we propose a registration method for generating temporal subtraction images that can be applied to low-quality chest LDCT images. Our approach consists of two major components. Firstly, global matching based on the center of gravity is performed on the preprocessed images, and the region of interest (ROI) is set. Secondly, local matching by free-form deformation (FFD) based on B-Spline is performed on the ROI as final registration. In this paper, we apply our proposed method to LDCT images of 6 cases, and reduce 57.29% in the calculation time, 26.1% in the half value width, and 29.6% in the sum of histogram of temporal subtraction images comparing with the conventional method.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"7 1","pages":"411-414"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the number of lung cancer deaths has been increasing. In Japan, CT (Computed Tomography) equipment is used for its visual screening. However, there is a problem that seeing huge number of images taken by CT is a burden on the doctor. To overcome this problem, the CAD (Computer Aided Diagnosis) system is introduced on medical fields. In CT screening, LDCT (Low Dose Computed Tomography) screening is desirable considering radiation exposure. However, the image quality which is caused the lower the dose is another problem on the screening. A CAD system that enables accurate diagnosis even at low doses is needed. Therefore, in this paper, we propose a registration method for generating temporal subtraction images that can be applied to low-quality chest LDCT images. Our approach consists of two major components. Firstly, global matching based on the center of gravity is performed on the preprocessed images, and the region of interest (ROI) is set. Secondly, local matching by free-form deformation (FFD) based on B-Spline is performed on the ROI as final registration. In this paper, we apply our proposed method to LDCT images of 6 cases, and reduce 57.29% in the calculation time, 26.1% in the half value width, and 29.6% in the sum of histogram of temporal subtraction images comparing with the conventional method.