{"title":"Artificial motivations based on drive-reduction theory in self-referential model-building control systems","authors":"Moritz Schneider, J. Adamy","doi":"10.1109/IJCNN.2015.7280623","DOIUrl":null,"url":null,"abstract":"Motivation and emotion are inseparable component factors of value systems in living beings, which enable them to act purposefully in a partially unknown and sometimes unforgiving environment. Value systems that drive innate reinforcement learning mechanisms have been identified as key factors in self-directed control and autonomous development towards higher intelligence and seem crucial in the development of a concept of “self” in sentient beings [1]. This contribution is concerned with the relationship between artificial learning control systems and innate value systems. In particular, we adapt the state-of-the-art model of motivational processes based on reduction of generalized drives towards higher flexibility, expressivity and representation capability. A framework for modelling self-adaptive value systems, which develop autonomously starting from an inherited (or designed) innate representation, within a learning control system architecture is formulated. We discuss the relationship of anticipated effects in this control architecture with psychological theory on motivations and contrast our framework with related approaches.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"27 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Motivation and emotion are inseparable component factors of value systems in living beings, which enable them to act purposefully in a partially unknown and sometimes unforgiving environment. Value systems that drive innate reinforcement learning mechanisms have been identified as key factors in self-directed control and autonomous development towards higher intelligence and seem crucial in the development of a concept of “self” in sentient beings [1]. This contribution is concerned with the relationship between artificial learning control systems and innate value systems. In particular, we adapt the state-of-the-art model of motivational processes based on reduction of generalized drives towards higher flexibility, expressivity and representation capability. A framework for modelling self-adaptive value systems, which develop autonomously starting from an inherited (or designed) innate representation, within a learning control system architecture is formulated. We discuss the relationship of anticipated effects in this control architecture with psychological theory on motivations and contrast our framework with related approaches.