{"title":"Biophysical Contributions and Challenges in Oncology","authors":"H. Black","doi":"10.4172/2329-6771.1000E111","DOIUrl":null,"url":null,"abstract":"Students of the life sciences (and hence oncology) have long recognized that biology obeys the same chemical and physical laws that govern all aspects of our universe. Indeed, the lines between a monolithic biology have become quite blurred between biochemistry and biophysics, the latter involving the implementation of physics methods or physics principles to the study of life and its processes. The German-American physicist, Max Delbruck, after arriving in the U.S., soon applied his physics training to biological problems. He is considered by some to be one of the founding fathers of modern molecular biology [1]. His contributions began at a time before the structure of DNA was known and Harold Varmus [2], from a plenary lecture at the American Physical Society in 1999, summarized those fundamental questions that were being asked at that time: What is the physical form in which hereditary information is stored? How is it reproduced when a cell divides? How is that information reasserted during sexual reproduction? How does that information change when mutations occur? Answers to these questions were sought employing bacteria and bacteriophage interactions-a simple model from which our knowledge of genetics was greatly advanced. In the past, physicists have made major contributions in the areas of biological energetics, enzyme and reaction kinetics, oxidation-reduction potentials, osmotic pressure and diffusion, optics, surfaces and interfaces, viscosity and liquid flow, ion transport, structure and elasticity, energetics of photoreaction centers, as well as many other areas pertinent to the study of life. Zhou [3] has summarized major research advances that have led to Nobel Prize winning contributions. Beginning with the discovery of X-rays and their diffraction by crystals that, in turn, led to the new analytical tool of X-ray crystallography. This advance made possible the determination of DNA and protein structures, the structure of photosynthetic reaction centers, ion channels, and ribosome and RNA polymerase II structures. Nuclear Magnetic Resonance Spectroscopy and the development of the Electron Microscope are examples of other contributions by physicists that have made possible the study of life, and its processes, in a detail not previously afforded and extended our horizons of investigation and depth of knowledge.","PeriodicalId":16252,"journal":{"name":"Journal of Integrative Oncology","volume":"10 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-6771.1000E111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Students of the life sciences (and hence oncology) have long recognized that biology obeys the same chemical and physical laws that govern all aspects of our universe. Indeed, the lines between a monolithic biology have become quite blurred between biochemistry and biophysics, the latter involving the implementation of physics methods or physics principles to the study of life and its processes. The German-American physicist, Max Delbruck, after arriving in the U.S., soon applied his physics training to biological problems. He is considered by some to be one of the founding fathers of modern molecular biology [1]. His contributions began at a time before the structure of DNA was known and Harold Varmus [2], from a plenary lecture at the American Physical Society in 1999, summarized those fundamental questions that were being asked at that time: What is the physical form in which hereditary information is stored? How is it reproduced when a cell divides? How is that information reasserted during sexual reproduction? How does that information change when mutations occur? Answers to these questions were sought employing bacteria and bacteriophage interactions-a simple model from which our knowledge of genetics was greatly advanced. In the past, physicists have made major contributions in the areas of biological energetics, enzyme and reaction kinetics, oxidation-reduction potentials, osmotic pressure and diffusion, optics, surfaces and interfaces, viscosity and liquid flow, ion transport, structure and elasticity, energetics of photoreaction centers, as well as many other areas pertinent to the study of life. Zhou [3] has summarized major research advances that have led to Nobel Prize winning contributions. Beginning with the discovery of X-rays and their diffraction by crystals that, in turn, led to the new analytical tool of X-ray crystallography. This advance made possible the determination of DNA and protein structures, the structure of photosynthetic reaction centers, ion channels, and ribosome and RNA polymerase II structures. Nuclear Magnetic Resonance Spectroscopy and the development of the Electron Microscope are examples of other contributions by physicists that have made possible the study of life, and its processes, in a detail not previously afforded and extended our horizons of investigation and depth of knowledge.