The Punching Shear Capacity Estimation of FRP- Strengthened RC Slabs Using Artificial Neural Network and Group Method of Data Handling

E. Darvishan
{"title":"The Punching Shear Capacity Estimation of FRP- Strengthened RC Slabs Using Artificial Neural Network and Group Method of Data Handling","authors":"E. Darvishan","doi":"10.22075/JRCE.2020.20335.1407","DOIUrl":null,"url":null,"abstract":"Recently soft computing methods have been employed in most fields, especially in civil engineering, due to its high accuracy to predict the results and process information. Soft computing is the result of new scientific endeavors that make modeling, analysis, and, ultimately, the control of complex systems possible with greater ease and success. The essential methods of soft computing are fuzzy logic, artificial neural networks, and genetic algorithm. In this paper, using 74 valid experimental data, estimation of punching shear capacity of FRP-strengthened RC slabs using two powerful methods (artificial neural network and Group method of data handling) has been investigated. The maximum and minimum dimension of column cross-section, the effective height of slab, the compressive strength of concrete, modulus of elasticity of FRP bar, and the percentage of FRP bars were selected as input variables, and the punching shear capacity of the slab was selected as the output variable. Also, in order to investigate the effect of the variables mentioned above on the results, sensitivity analysis is conducted in both methods. Absolute Fraction of Variance for the two methods showed that the GMDH method had higher precision (1.73%) than the ANN method in the prediction of results.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2020.20335.1407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

Abstract

Recently soft computing methods have been employed in most fields, especially in civil engineering, due to its high accuracy to predict the results and process information. Soft computing is the result of new scientific endeavors that make modeling, analysis, and, ultimately, the control of complex systems possible with greater ease and success. The essential methods of soft computing are fuzzy logic, artificial neural networks, and genetic algorithm. In this paper, using 74 valid experimental data, estimation of punching shear capacity of FRP-strengthened RC slabs using two powerful methods (artificial neural network and Group method of data handling) has been investigated. The maximum and minimum dimension of column cross-section, the effective height of slab, the compressive strength of concrete, modulus of elasticity of FRP bar, and the percentage of FRP bars were selected as input variables, and the punching shear capacity of the slab was selected as the output variable. Also, in order to investigate the effect of the variables mentioned above on the results, sensitivity analysis is conducted in both methods. Absolute Fraction of Variance for the two methods showed that the GMDH method had higher precision (1.73%) than the ANN method in the prediction of results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络和数据处理成组方法的FRP加固RC板冲剪承载力估算
近年来,软计算方法由于其预测结果和处理信息的精度高,已被应用于大多数领域,特别是土木工程领域。软计算是新的科学努力的结果,它使建模、分析和最终控制复杂系统变得更加容易和成功。软计算的基本方法是模糊逻辑、人工神经网络和遗传算法。本文利用74份有效的试验数据,采用人工神经网络和数据处理成组方法对frp加固RC板冲剪承载力进行了估算。选取柱截面最大尺寸、最小尺寸、楼板有效高度、混凝土抗压强度、FRP筋弹性模量、FRP筋占比作为输入变量,楼板冲剪承载力作为输出变量。此外,为了研究上述变量对结果的影响,两种方法都进行了敏感性分析。两种方法的绝对方差分数(Absolute Fraction of Variance)表明,GMDH方法对结果的预测精度(1.73%)高于人工神经网络方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Damage Sensitive-Stories of RC and Steel Frames under Critical Mainshock-Aftershock Ground Motions Evaluation of Intermediate Reinforced Concrete Moment Frame subjected to Truck collision Damage Detection in Prestressed Concrete Slabs Using Wavelet Analysis of Vibration Responses in the Time Domain Rehabilitation of Corroded Reinforced Concrete Elements by Rebar Replacement Risk assessment and challenges faced in repairs and rehabilitation of dilapidated buildings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1