Improvement of CSS Method for Extra-Heavy Oil Recovery in Shallow Reservoirs by Simultaneous Injection of in-Situ Upgrading Catalysts and Solvent: Laboratory Study, Simulation and Field Application
A. Vakhin, S. Sitnov, I. Mukhamatdinov, M. Varfolomeev, Allan Rojas, Raushan M. Sabiryanov, A. Al-Muntaser, V. Sudakov, D. Nurgaliev, I. Minkhanov, M. Amerkhanov, R. Akhmadullin
{"title":"Improvement of CSS Method for Extra-Heavy Oil Recovery in Shallow Reservoirs by Simultaneous Injection of in-Situ Upgrading Catalysts and Solvent: Laboratory Study, Simulation and Field Application","authors":"A. Vakhin, S. Sitnov, I. Mukhamatdinov, M. Varfolomeev, Allan Rojas, Raushan M. Sabiryanov, A. Al-Muntaser, V. Sudakov, D. Nurgaliev, I. Minkhanov, M. Amerkhanov, R. Akhmadullin","doi":"10.2118/200082-ms","DOIUrl":null,"url":null,"abstract":"\n In this work method to improve the efficiency of the development of shallow deposits of extra-heavy oil using cyclic team stimulation (CSS) technology together with injection of catalyst for in-situ upgrading and solvent was proposed. Oil-soluble catalyst has been developed. Efficiency of catalyst was proved in laboratory. Volume and conditions of catalyst and solvent injection together with steam were determined based on simulation results. Pilot tests of technology were carried out on extra-heavy oilfield in Tatarstan, Russia.\n The screening of catalysts and solvents together with injection of steam was studied in high pressure reactors under reservoir conditions. Heavy oil displacement coefficients in basic scenario of steam injection and second scenario of steam injection together with catalyst and solvent were measured on self-designed experimental steam injection apparatus.\n The technology was simulated with tNavigator softwarre (Rock Fluid Dynamics) version 18.2, STARS. Pilot tests were carried out in several stages: preliminary short-term injection of steam to pre-heat the reservoir, injection of catalyst solution and solvent, the subsequent full-scale stage of steam injection, imbibition, and production. The results of field tests confirmed laboratory and simulation data. According to the analyzed samples after six months of field tests, the viscosity at the first stage decreases as a result of dilution with a solvent. The effect of the catalyst, which particles are adsorbed on the reservoir rocks, clearly demonstrated later.\n It is shown that the combined use of in-situ upgrading catalyst and a solvent in CSS method allows to increase oil recovery factor. At the same time, the produced oil has better properties. Significant degree of conversion of resins and asphaltenes to light fractions was established. Field tests on Ashal'cha oilfield have shown that this technology is effective for the development of shallow deposits of extra-heavy oil.","PeriodicalId":11113,"journal":{"name":"Day 1 Mon, March 21, 2022","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, March 21, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/200082-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work method to improve the efficiency of the development of shallow deposits of extra-heavy oil using cyclic team stimulation (CSS) technology together with injection of catalyst for in-situ upgrading and solvent was proposed. Oil-soluble catalyst has been developed. Efficiency of catalyst was proved in laboratory. Volume and conditions of catalyst and solvent injection together with steam were determined based on simulation results. Pilot tests of technology were carried out on extra-heavy oilfield in Tatarstan, Russia.
The screening of catalysts and solvents together with injection of steam was studied in high pressure reactors under reservoir conditions. Heavy oil displacement coefficients in basic scenario of steam injection and second scenario of steam injection together with catalyst and solvent were measured on self-designed experimental steam injection apparatus.
The technology was simulated with tNavigator softwarre (Rock Fluid Dynamics) version 18.2, STARS. Pilot tests were carried out in several stages: preliminary short-term injection of steam to pre-heat the reservoir, injection of catalyst solution and solvent, the subsequent full-scale stage of steam injection, imbibition, and production. The results of field tests confirmed laboratory and simulation data. According to the analyzed samples after six months of field tests, the viscosity at the first stage decreases as a result of dilution with a solvent. The effect of the catalyst, which particles are adsorbed on the reservoir rocks, clearly demonstrated later.
It is shown that the combined use of in-situ upgrading catalyst and a solvent in CSS method allows to increase oil recovery factor. At the same time, the produced oil has better properties. Significant degree of conversion of resins and asphaltenes to light fractions was established. Field tests on Ashal'cha oilfield have shown that this technology is effective for the development of shallow deposits of extra-heavy oil.