Effect of Na Doping on Some Physical Properties of Chemically Sprayed CZTS Thin Films

IF 2.8 4区 生物学 3 Biotech Pub Date : 2022-09-02 DOI:10.26565/2312-4334-2022-3-11
Noura Mahdi, N. Bakr
{"title":"Effect of Na Doping on Some Physical Properties of Chemically Sprayed CZTS Thin Films","authors":"Noura Mahdi, N. Bakr","doi":"10.26565/2312-4334-2022-3-11","DOIUrl":null,"url":null,"abstract":"In this work, sodium-doped copper zinc tin sulfide (CZTS) thin films are prepared by depositing them on glass substrates at temperature of (400±10) °C and thickness of (350±10) nm using Chemical Spray Pyrolysis (CSP) technique. 0.02 M of copper chloride dihydrate (CuCl2.2H2O), 0.01 M of zinc chloride (ZnCl2), 0.01 M of tin chloride dihydrate (SnCl2.2H2O), and 0.16 M of thiourea (SC(NH2)2) were used as sources of copper, zinc, tin, and sulphur ions respectively. Sodium chloride (NaCl) at different volumetric ratios of (1, 3, 5, 7 and 9) % was used as a dopant source. The solution is sprayed on glass substrates. XRD diffraction, Raman spectroscopy, FESEM, UV-Vis-NIR, and Hall effect techniques were used to investigate the structural, optical, and electrical properties of the produced films. The XRD diffraction results revealed that all films are polycrystalline, with a tetragonal structure and a preferential orientation along the (112) plane. The crystallite size of all films was estimated using Scherrer's method, and it was found that the crystallite size decreases as the doping ratio increases. The FESEM results revealed the existence of cauliflower-shaped nanoparticles. The optical energy band gap was demonstrated to have a value ranging from 1.6 to 1.51 eV with a high absorption coefficient (α ≥104 cm-1) in the visible region of the spectrum. Hall measurements showed that the conductivity of CZTS thin films with various Na doping ratios have p-type electrical conductivity, and it increases as the Na doping ratio increases.","PeriodicalId":48765,"journal":{"name":"3 Biotech","volume":"24 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26565/2312-4334-2022-3-11","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, sodium-doped copper zinc tin sulfide (CZTS) thin films are prepared by depositing them on glass substrates at temperature of (400±10) °C and thickness of (350±10) nm using Chemical Spray Pyrolysis (CSP) technique. 0.02 M of copper chloride dihydrate (CuCl2.2H2O), 0.01 M of zinc chloride (ZnCl2), 0.01 M of tin chloride dihydrate (SnCl2.2H2O), and 0.16 M of thiourea (SC(NH2)2) were used as sources of copper, zinc, tin, and sulphur ions respectively. Sodium chloride (NaCl) at different volumetric ratios of (1, 3, 5, 7 and 9) % was used as a dopant source. The solution is sprayed on glass substrates. XRD diffraction, Raman spectroscopy, FESEM, UV-Vis-NIR, and Hall effect techniques were used to investigate the structural, optical, and electrical properties of the produced films. The XRD diffraction results revealed that all films are polycrystalline, with a tetragonal structure and a preferential orientation along the (112) plane. The crystallite size of all films was estimated using Scherrer's method, and it was found that the crystallite size decreases as the doping ratio increases. The FESEM results revealed the existence of cauliflower-shaped nanoparticles. The optical energy band gap was demonstrated to have a value ranging from 1.6 to 1.51 eV with a high absorption coefficient (α ≥104 cm-1) in the visible region of the spectrum. Hall measurements showed that the conductivity of CZTS thin films with various Na doping ratios have p-type electrical conductivity, and it increases as the Na doping ratio increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Na掺杂对化学喷涂CZTS薄膜某些物理性能的影响
本文采用化学喷雾热解(CSP)技术,在温度为(400±10)℃、厚度为(350±10)nm的玻璃衬底上沉积了钠掺杂铜锌锡硫化钠(CZTS)薄膜。分别用0.02 M二水氯化铜(CuCl2.2H2O)、0.01 M氯化锌(ZnCl2)、0.01 M二水氯化锡(SnCl2.2H2O)和0.16 M硫脲(SC(NH2)2)作为铜、锌、锡和硫离子的来源。采用体积比分别为(1、3、5、7、9)%的氯化钠(NaCl)作为掺杂源。该溶液喷在玻璃基板上。利用XRD衍射、拉曼光谱、FESEM、UV-Vis-NIR和霍尔效应技术研究了所制备薄膜的结构、光学和电学性能。XRD衍射结果表明,所有薄膜均为多晶,具有四边形结构和沿(112)平面的优先取向。采用Scherrer方法对各膜的晶粒尺寸进行了估计,发现随着掺杂比的增加,各膜的晶粒尺寸减小。FESEM结果显示了菜花状纳米颗粒的存在。光能带隙在1.6 ~ 1.51 eV之间,具有较高的吸收系数(α≥104 cm-1)。霍尔测量结果表明,不同Na掺杂比的CZTS薄膜电导率均为p型电导率,且随Na掺杂比的增加而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
3 Biotech
3 Biotech BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
期刊最新文献
Immobilization of alkaline protease produced by Streptomyces rochei strain NAM-19 in solid state fermentation based on medium optimization using central composite design A Predictive Approach for Evaluating Thermo-Physical Properties of Nano fluids Using Artificial Intelligence Algorithms An Assessment on The Manufacturing Environment Using the Grey Relational Analysis Method Identification of Changing Personnel with Double-Layer Network Fusion and Bi-Level Monitoring Mechanism A Smart Neuro-Centric Approach to Predict Heart Attacks for Child Using IOT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1