{"title":"Randomly punctured Reed-Solomon codes achieve list-decoding capacity over linear-sized fields","authors":"Omar Alrabiah, V. Guruswami, Ray Li","doi":"10.48550/arXiv.2304.09445","DOIUrl":null,"url":null,"abstract":"Reed--Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-degree polynomials over a finite field on some sequence of distinct field elements. They are widely known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully understood. Given the prevalence of Reed-Solomon codes, a fundamental question in coding theory is determining if Reed--Solomon codes can optimally achieve list-decoding capacity. A recent breakthrough by Brakensiek, Gopi, and Makam, established that Reed--Solomon codes are combinatorially list-decodable all the way to capacity. However, their results hold for randomly-punctured Reed--Solomon codes over an exponentially large field size $2^{O(n)}$, where $n$ is the block length of the code. A natural question is whether Reed--Solomon codes can still achieve capacity over smaller fields. Recently, Guo and Zhang showed that Reed--Solomon codes are list-decodable to capacity with field size $O(n^2)$. We show that Reed--Solomon codes are list-decodable to capacity with linear field size $O(n)$, which is optimal up to the constant factor. We also give evidence that the ratio between the alphabet size $q$ and code length $n$ cannot be bounded by an absolute constant. Our techniques also show that random linear codes are list-decodable up to (the alphabet-independent) capacity with optimal list-size $O(1/\\varepsilon)$ and near-optimal alphabet size $2^{O(1/\\varepsilon^2)}$, where $\\varepsilon$ is the gap to capacity. As far as we are aware, list-decoding up to capacity with optimal list-size $O(1/\\varepsilon)$ was previously not known to be achievable with any linear code over a constant alphabet size (even non-constructively). Our proofs are based on the ideas of Guo and Zhang, and we additionally exploit symmetries of reduced intersection matrices.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.09445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Reed--Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-degree polynomials over a finite field on some sequence of distinct field elements. They are widely known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully understood. Given the prevalence of Reed-Solomon codes, a fundamental question in coding theory is determining if Reed--Solomon codes can optimally achieve list-decoding capacity. A recent breakthrough by Brakensiek, Gopi, and Makam, established that Reed--Solomon codes are combinatorially list-decodable all the way to capacity. However, their results hold for randomly-punctured Reed--Solomon codes over an exponentially large field size $2^{O(n)}$, where $n$ is the block length of the code. A natural question is whether Reed--Solomon codes can still achieve capacity over smaller fields. Recently, Guo and Zhang showed that Reed--Solomon codes are list-decodable to capacity with field size $O(n^2)$. We show that Reed--Solomon codes are list-decodable to capacity with linear field size $O(n)$, which is optimal up to the constant factor. We also give evidence that the ratio between the alphabet size $q$ and code length $n$ cannot be bounded by an absolute constant. Our techniques also show that random linear codes are list-decodable up to (the alphabet-independent) capacity with optimal list-size $O(1/\varepsilon)$ and near-optimal alphabet size $2^{O(1/\varepsilon^2)}$, where $\varepsilon$ is the gap to capacity. As far as we are aware, list-decoding up to capacity with optimal list-size $O(1/\varepsilon)$ was previously not known to be achievable with any linear code over a constant alphabet size (even non-constructively). Our proofs are based on the ideas of Guo and Zhang, and we additionally exploit symmetries of reduced intersection matrices.