{"title":"Extraction of Nd(III), Eu(III), Am(III) and Cm(III) With 6-Carboxylic Di(2-Ethylhexyl) Amide Pyridine","authors":"Chao Xu, Yu Du, Tingting Liu, Suliang Yang","doi":"10.1115/icone29-90818","DOIUrl":null,"url":null,"abstract":"\n Solvent extraction has been widely used in spent fuel reprocessing because of its advantages such as high mass transfer rate, short production cycle, easy operation and large extraction capacity. The ligands containing soft S and N atoms usually have a good effect on the separation of trivalent lanthanides actinides. Herein, a novel extractant, 6-carboxylic di(2-ethylhexyl) amide pyridine (DEHAPA, HA), containing carboxyl and amide pyridine, was designed. The extraction of Nd(III), Eu(III), Am(III) and Cm(III), representing trivalent lanthanides and actinides, from nitric solution has been carried out by DEHAPA diluted in toluene as the organic phase. According to the slope analysis, the results show that the extraction of Ln(III) and An(III) with DEHAPA was governed by ion-exchange mechanism and the extraction equilibrium constants of Nd(III), Eu(III), Am(III) and Cm(III) have been calculated. The effect of concentration indicated that the structure of extraction complexes are 1:3/LnA3 and 1:3/AnA3. The temperature has a slight influence to distribution ratio of extraction Nd(III) and Eu(III). The infrared spectrum of DEHAPA and extracted complex analysis showed that -N-C = O and -O-C = O group coordinated with Nd(III). According to 1:3/LnA3 extracted complex structure, the Nd(III) ion in complex was coordinated with three -N-C = O, -O-C = O and pyridine group from three tridentate A− ligands by three tridentate A− ligand in organic solvent. This work reveals the unique extraction and coordination structure and provides a value reference to design more effective extraction ligands for Ln(III)/An(III) separation.","PeriodicalId":36762,"journal":{"name":"Journal of Nuclear Fuel Cycle and Waste Technology","volume":"69 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Fuel Cycle and Waste Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-90818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Solvent extraction has been widely used in spent fuel reprocessing because of its advantages such as high mass transfer rate, short production cycle, easy operation and large extraction capacity. The ligands containing soft S and N atoms usually have a good effect on the separation of trivalent lanthanides actinides. Herein, a novel extractant, 6-carboxylic di(2-ethylhexyl) amide pyridine (DEHAPA, HA), containing carboxyl and amide pyridine, was designed. The extraction of Nd(III), Eu(III), Am(III) and Cm(III), representing trivalent lanthanides and actinides, from nitric solution has been carried out by DEHAPA diluted in toluene as the organic phase. According to the slope analysis, the results show that the extraction of Ln(III) and An(III) with DEHAPA was governed by ion-exchange mechanism and the extraction equilibrium constants of Nd(III), Eu(III), Am(III) and Cm(III) have been calculated. The effect of concentration indicated that the structure of extraction complexes are 1:3/LnA3 and 1:3/AnA3. The temperature has a slight influence to distribution ratio of extraction Nd(III) and Eu(III). The infrared spectrum of DEHAPA and extracted complex analysis showed that -N-C = O and -O-C = O group coordinated with Nd(III). According to 1:3/LnA3 extracted complex structure, the Nd(III) ion in complex was coordinated with three -N-C = O, -O-C = O and pyridine group from three tridentate A− ligands by three tridentate A− ligand in organic solvent. This work reveals the unique extraction and coordination structure and provides a value reference to design more effective extraction ligands for Ln(III)/An(III) separation.