Investigating social media spatiotemporal transferability for transport

IF 12.5 Q1 TRANSPORTATION Communications in Transportation Research Pub Date : 2022-12-01 DOI:10.1016/j.commtr.2022.100081
Emmanouil Chaniotakis , Mohamed Abouelela , Constantinos Antoniou , Konstadinos Goulias
{"title":"Investigating social media spatiotemporal transferability for transport","authors":"Emmanouil Chaniotakis ,&nbsp;Mohamed Abouelela ,&nbsp;Constantinos Antoniou ,&nbsp;Konstadinos Goulias","doi":"10.1016/j.commtr.2022.100081","DOIUrl":null,"url":null,"abstract":"<div><p>Social Media have increasingly provided data about the movement of people in cities making them useful in understanding the daily life of people in different geographies. Particularly useful for travel analysis is when Social Media users allow (voluntarily or not) tracing their movement using geotagged information of their communication with these online platforms. In this paper we use geotagged tweets from 10 cities in the European Union and United States of America to extract spatiotemporal patterns, study differences and commonalities among these cities, and explore the nature of user location recurrence. The analysis here shows the distinction between residents and tourists is fundamental for the development of city-wide models. Identification of repeated rates of location (recurrence) can be used to define activity spaces. Differences and similarities across different geographies emerge from this analysis in terms of local distributions but also in terms of the worldwide reach among the cities explored here. The comparison of the temporal signature between geotagged and non-geotagged tweets also shows similar temporal distributions that capture in essence city rhythms of tweets and activity spaces.</p></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772424722000312/pdfft?md5=6f7cce7ae76c54dacaf8db2857b64682&pid=1-s2.0-S2772424722000312-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424722000312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 2

Abstract

Social Media have increasingly provided data about the movement of people in cities making them useful in understanding the daily life of people in different geographies. Particularly useful for travel analysis is when Social Media users allow (voluntarily or not) tracing their movement using geotagged information of their communication with these online platforms. In this paper we use geotagged tweets from 10 cities in the European Union and United States of America to extract spatiotemporal patterns, study differences and commonalities among these cities, and explore the nature of user location recurrence. The analysis here shows the distinction between residents and tourists is fundamental for the development of city-wide models. Identification of repeated rates of location (recurrence) can be used to define activity spaces. Differences and similarities across different geographies emerge from this analysis in terms of local distributions but also in terms of the worldwide reach among the cities explored here. The comparison of the temporal signature between geotagged and non-geotagged tweets also shows similar temporal distributions that capture in essence city rhythms of tweets and activity spaces.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调查社交媒体的时空可转移性
社交媒体越来越多地提供有关城市人口流动的数据,使其有助于了解不同地区人们的日常生活。当社交媒体用户允许(自愿或非自愿)使用他们与这些在线平台通信的地理标记信息追踪他们的活动时,对旅行分析特别有用。本文以欧盟和美国10个城市的地理标签推文为研究对象,提取推文的时空格局,研究推文的差异性和共性,探讨推文用户位置重复的本质。这里的分析表明,区分居民和游客是城市模式发展的基础。识别位置的重复率(重现率)可用于定义活动空间。不同地域之间的差异和相似之处不仅体现在本地分布上,也体现在这里探讨的城市的全球范围内。地理标记与非地理标记tweet的时间特征比较也显示出相似的时间分布,本质上捕获了tweet和活动空间的城市节奏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
期刊最新文献
Harnessing multimodal large language models for traffic knowledge graph generation and decision-making Controllability test for nonlinear datatic systems Intelligent vehicle platooning transit A multi-functional simulation platform for on-demand ride service operations Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1