Hyungki Son, Inwook Hwang, Tae-Heon Yang, Seungmoon Choi, Sang-Youn Kim, Jin Ryong Kim
{"title":"RealWalk: Haptic Shoes Using Actuated MR Fluid for Walking in VR","authors":"Hyungki Son, Inwook Hwang, Tae-Heon Yang, Seungmoon Choi, Sang-Youn Kim, Jin Ryong Kim","doi":"10.1109/WHC.2019.8816165","DOIUrl":null,"url":null,"abstract":"We present RealWalk, a pair of haptic shoes for HMD-based VR, designed to create realistic sensations of ground surface deformation and texture through MR fluid actuators. RealWalk offers a novel interaction scheme through the physical interaction between the shoes and the ground surfaces while walking in VR. Each shoe consists of two MR fluid actuators, an insole pressure sensor, and a foot position tracker. When a user steps on the ground with the shoes, the two MR fluid actuators are depressed, creating a variety of ground material deformation such as snow, mud, and dry sand by changing its viscosity. We build an interactive VR application and compare RealWalk with vibrotactile-based haptic shoes to investigate its effectiveness. We report that, compared to vibrotactile-haptic shoes, RealWalk provides higher ratings for discrimination, realism, and satisfaction. We also report qualitative user feedback for their experiences.","PeriodicalId":6702,"journal":{"name":"2019 IEEE World Haptics Conference (WHC)","volume":"14 1","pages":"241-246"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE World Haptics Conference (WHC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2019.8816165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We present RealWalk, a pair of haptic shoes for HMD-based VR, designed to create realistic sensations of ground surface deformation and texture through MR fluid actuators. RealWalk offers a novel interaction scheme through the physical interaction between the shoes and the ground surfaces while walking in VR. Each shoe consists of two MR fluid actuators, an insole pressure sensor, and a foot position tracker. When a user steps on the ground with the shoes, the two MR fluid actuators are depressed, creating a variety of ground material deformation such as snow, mud, and dry sand by changing its viscosity. We build an interactive VR application and compare RealWalk with vibrotactile-based haptic shoes to investigate its effectiveness. We report that, compared to vibrotactile-haptic shoes, RealWalk provides higher ratings for discrimination, realism, and satisfaction. We also report qualitative user feedback for their experiences.