Experimental Studies on Durability and Mechanical Characteristics of Concrete using POFA and SCBA hybridization

IF 0.9 Q4 ENGINEERING, CIVIL Australian Journal of Structural Engineering Pub Date : 2022-05-17 DOI:10.1080/13287982.2022.2075136
Chandrasekhar Reddy K, R. N
{"title":"Experimental Studies on Durability and Mechanical Characteristics of Concrete using POFA and SCBA hybridization","authors":"Chandrasekhar Reddy K, R. N","doi":"10.1080/13287982.2022.2075136","DOIUrl":null,"url":null,"abstract":"ABSTRACT The majority of the world’s waste does not go through the recycling process. Moreover, in the suburbs, waste growth and disposal impose a significant risk to the environment. Two distinct waste materials, such as palm oil fuel ash (POFA) and sugar cane bagasse ash (SCBA), are used as basic materials in this research, with weight fractions of 0%, 5.0%, 10.0%, 15.0%, 20.0%, and 25.0%, respectively, to substitute for grade 50 MPa concrete. Mechanical properties such as flexural strength, tensile and compressive strength of hybrid reinforced blended concrete were examined in the primary phase at 28 days of age. The study proposed an alternative mixture for each hybrid fibre combination. The durable properties such as sorptivity, saturated water absorption, acid resistance, and sulphate resistance of quaternary blended concrete with optimum hybrid materials were studied in the secondary phase. From the experimental investigation, mechanical properties are enhanced, and higher compressive and flexural strength are achieved as 64 MPa and 7.93 MPa in addition to 20% POFA and SCBA particles. The durable properties of quaternary blended concrete are enhanced properties due to the addition of hybrid materials.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2022.2075136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The majority of the world’s waste does not go through the recycling process. Moreover, in the suburbs, waste growth and disposal impose a significant risk to the environment. Two distinct waste materials, such as palm oil fuel ash (POFA) and sugar cane bagasse ash (SCBA), are used as basic materials in this research, with weight fractions of 0%, 5.0%, 10.0%, 15.0%, 20.0%, and 25.0%, respectively, to substitute for grade 50 MPa concrete. Mechanical properties such as flexural strength, tensile and compressive strength of hybrid reinforced blended concrete were examined in the primary phase at 28 days of age. The study proposed an alternative mixture for each hybrid fibre combination. The durable properties such as sorptivity, saturated water absorption, acid resistance, and sulphate resistance of quaternary blended concrete with optimum hybrid materials were studied in the secondary phase. From the experimental investigation, mechanical properties are enhanced, and higher compressive and flexural strength are achieved as 64 MPa and 7.93 MPa in addition to 20% POFA and SCBA particles. The durable properties of quaternary blended concrete are enhanced properties due to the addition of hybrid materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用POFA和SCBA杂交技术研究混凝土耐久性和力学特性
世界上大部分的垃圾都没有经过回收处理。此外,在郊区,废物的增长和处置对环境构成了重大风险。本研究采用棕榈油燃料灰(POFA)和甘蔗甘蔗渣灰(SCBA)两种不同的废弃物作为基础材料,其质量分数分别为0%、5.0%、10.0%、15.0%、20.0%和25.0%,替代50 MPa级混凝土。在28日龄的初级阶段测试了混杂钢筋混合混凝土的抗折强度、抗拉强度和抗压强度等力学性能。该研究提出了每种混合纤维组合的替代混合物。第二阶段研究了最佳掺合材料对四元混凝土的吸附性能、饱和吸水率、耐酸性能和抗硫酸盐性能的影响。实验结果表明,添加20%的POFA和SCBA颗粒后,材料的力学性能得到了提高,抗压和抗折强度分别为64 MPa和7.93 MPa。掺加杂化材料,增强了四元混凝土的耐久性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
31
期刊介绍: The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.
期刊最新文献
Performance evaluation of concrete comprising sugarcane bagasse ash and recycled polyethylene terephthalate Improving seismic performance of structural systems via reinforcing column bases Evaluation on structural performance of hybrid composite post-tension plate girder through finite element analysis Determination of response modification coefficient of SPSW in RC frame using plastic design method A plastic hinge method for static pushover analysis of 3D frame structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1