Identification of sustainable carbon capture and utilization (CCU) pathways using state-task network representation

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-10-01 DOI:10.1016/j.compchemeng.2023.108408
Wonsuk Chung , Sunwoo Kim , Ali S. Al-Hunaidy , Hasan Imran , Aqil Jamal , Jay H. Lee
{"title":"Identification of sustainable carbon capture and utilization (CCU) pathways using state-task network representation","authors":"Wonsuk Chung ,&nbsp;Sunwoo Kim ,&nbsp;Ali S. Al-Hunaidy ,&nbsp;Hasan Imran ,&nbsp;Aqil Jamal ,&nbsp;Jay H. Lee","doi":"10.1016/j.compchemeng.2023.108408","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon capture and utilization (CCU) can be a pertinent solution to avoid millions of tons of carbon emission. The challenge is to identify, among numerous available options of carbon sources capture/utilization technologies, and products, the CCU pathways with best economic and/or CO<sub>2</sub> reduction potential. In this work, we propose a novel framework for identifying sustainable <em>CCU pathways</em><span>, i.e., combinations of sources, processes, and products, using a superstructure based on state-task network (STN) representation. STN allows incorporation of nonlinear models<span> including first-principles or surrogate models into the superstructure representation of potential CCU pathways. The proposed framework solves the superstructure optimization problem of mixed-integer nonlinear programming (MINLP) by introducing logic-based outer approximation (LOA), to reduce the computational time and improve the solvability greatly. A case study using a sizable CCU superstructure demonstrates that LOA can reduce the computational time from hours to minutes while identifying any sustainable pathway from a superstructure with highly nonlinear surrogate models.</span></span></p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"178 ","pages":"Article 108408"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423002788","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon capture and utilization (CCU) can be a pertinent solution to avoid millions of tons of carbon emission. The challenge is to identify, among numerous available options of carbon sources capture/utilization technologies, and products, the CCU pathways with best economic and/or CO2 reduction potential. In this work, we propose a novel framework for identifying sustainable CCU pathways, i.e., combinations of sources, processes, and products, using a superstructure based on state-task network (STN) representation. STN allows incorporation of nonlinear models including first-principles or surrogate models into the superstructure representation of potential CCU pathways. The proposed framework solves the superstructure optimization problem of mixed-integer nonlinear programming (MINLP) by introducing logic-based outer approximation (LOA), to reduce the computational time and improve the solvability greatly. A case study using a sizable CCU superstructure demonstrates that LOA can reduce the computational time from hours to minutes while identifying any sustainable pathway from a superstructure with highly nonlinear surrogate models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用状态-任务网络表征的可持续碳捕获与利用(CCU)途径的识别
碳捕获和利用(CCU)可以成为避免数百万吨碳排放的相关解决方案。我们面临的挑战是,在众多可用的碳源捕获/利用技术和产品中,找出具有最佳经济和/或二氧化碳减排潜力的CCU途径。在这项工作中,我们提出了一个新的框架来识别可持续的CCU路径,即来源,过程和产品的组合,使用基于状态任务网络(STN)表示的上层结构。STN允许将非线性模型(包括第一原理模型或替代模型)合并到潜在CCU通路的上层结构表示中。该框架通过引入基于逻辑的外近似(LOA)来解决混合整数非线性规划(MINLP)的上层结构优化问题,大大减少了计算时间,提高了可解性。一个使用大型CCU上部结构的案例研究表明,LOA可以将计算时间从数小时减少到几分钟,同时使用高度非线性替代模型从上部结构确定任何可持续路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1