Managing Single or Multi-Users Channel Allocation for the Priority Cognitive Access

M. Almasri, A. Mansour, C. Moy, A. Assoum, D. L. Jeune, C. Osswald
{"title":"Managing Single or Multi-Users Channel Allocation for the Priority Cognitive Access","authors":"M. Almasri, A. Mansour, C. Moy, A. Assoum, D. L. Jeune, C. Osswald","doi":"10.23919/Eusipco47968.2020.9287628","DOIUrl":null,"url":null,"abstract":"This manuscript investigates the problem of the Multi-Armed Bandit (MAB) in the context of the Opportunistic Spectrum Access (OSA) case with priority management (e.g. military applications). The main aim of a Secondary User (SU) in OSA is to increase his transmission throughput by seeking the best channel with the highest vacancy probability. In this manuscript, we propose a novel MAB algorithm called ϵ -UCB in order to enhance the spectrum learning of a SU and decrease the regret, i.e. the loss of reward due to the selection of worst channels. We analytically prove, and corroborate with simulations, that the regret of the proposed algorithm has a logarithmic behavior. So, after a finite number of time slots, the SU can estimate the vacancy probability of channels in order to target the best one for transmitting. Hereinafter, we extend ϵ -UCB to consider multiple priority users, where a SU can selfishly estimate and access the channels according to his prior rank. The simulation results show the superiority of the proposed algorithm for a single or multi-user cases compared to the well-known MAB algorithms.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"22 1","pages":"1722-1726"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This manuscript investigates the problem of the Multi-Armed Bandit (MAB) in the context of the Opportunistic Spectrum Access (OSA) case with priority management (e.g. military applications). The main aim of a Secondary User (SU) in OSA is to increase his transmission throughput by seeking the best channel with the highest vacancy probability. In this manuscript, we propose a novel MAB algorithm called ϵ -UCB in order to enhance the spectrum learning of a SU and decrease the regret, i.e. the loss of reward due to the selection of worst channels. We analytically prove, and corroborate with simulations, that the regret of the proposed algorithm has a logarithmic behavior. So, after a finite number of time slots, the SU can estimate the vacancy probability of channels in order to target the best one for transmitting. Hereinafter, we extend ϵ -UCB to consider multiple priority users, where a SU can selfishly estimate and access the channels according to his prior rank. The simulation results show the superiority of the proposed algorithm for a single or multi-user cases compared to the well-known MAB algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于优先认知访问的单用户或多用户信道分配管理
本文研究了在具有优先管理(例如军事应用)的机会性频谱接入(OSA)情况下的多武装强盗(MAB)问题。在OSA中,辅助用户(SU)的主要目标是通过寻找空置概率最高的最佳信道来提高其传输吞吐量。在本文中,我们提出了一种新的MAB算法,称为λ -UCB,以增强SU的频谱学习并减少遗憾,即由于选择最差信道而导致的奖励损失。我们分析证明,并与仿真证实,所提出的算法的遗憾具有对数的行为。因此,在有限的时隙后,SU可以估计信道的空缺概率,从而找到最佳的信道进行传输。下面,我们将λ -UCB扩展到考虑多个优先级用户,其中SU可以根据他的先验等级自私地估计和访问通道。仿真结果表明,该算法在单用户和多用户情况下都优于已知的MAB算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1