A Comparative Study on Exact Triangle Counting Algorithms on the GPU

Leyuan Wang, Yangzihao Wang, Carl Yang, John Douglas Owens
{"title":"A Comparative Study on Exact Triangle Counting Algorithms on the GPU","authors":"Leyuan Wang, Yangzihao Wang, Carl Yang, John Douglas Owens","doi":"10.1145/2915516.2915521","DOIUrl":null,"url":null,"abstract":"We implement exact triangle counting in graphs on the GPU using three different methodologies: subgraph matching to a triangle pattern; programmable graph analytics, with a set-intersection approach; and a matrix formulation based on sparse matrix-matrix multiplies. All three deliver best-of-class performance over CPU implementations and over comparable GPU implementations, with the graph-analytic approach achieving the best performance due to its ability to exploit efficient filtering steps to remove unnecessary work and its high-performance set-intersection core.","PeriodicalId":20568,"journal":{"name":"Proceedings of the ACM Workshop on High Performance Graph Processing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Workshop on High Performance Graph Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2915516.2915521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We implement exact triangle counting in graphs on the GPU using three different methodologies: subgraph matching to a triangle pattern; programmable graph analytics, with a set-intersection approach; and a matrix formulation based on sparse matrix-matrix multiplies. All three deliver best-of-class performance over CPU implementations and over comparable GPU implementations, with the graph-analytic approach achieving the best performance due to its ability to exploit efficient filtering steps to remove unnecessary work and its high-performance set-intersection core.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GPU的精确三角形计数算法的比较研究
我们使用三种不同的方法在GPU上实现图形中的精确三角形计数:子图与三角形模式匹配;可编程图分析,用集合交方法;一个基于稀疏矩阵-矩阵乘法的矩阵公式。与CPU实现和可比GPU实现相比,这三种实现都提供了一流的性能,图分析方法由于能够利用有效的过滤步骤来消除不必要的工作和高性能集交叉核心而实现了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Keynote Address Proceedings of the ACM Workshop on High Performance Graph Processing Parallel Shortest-Path Queries in Planar Graphs Session details: Full Papers Session 3 Session details: Short Papers Session
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1