{"title":"High Field – Low Energy Muon Ionization Cooling Channel","authors":"H. Sayed, R. Palmer","doi":"10.1103/PHYSREVSTAB.18.091001","DOIUrl":null,"url":null,"abstract":"Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈ 300 μm–rad in transverse and ≈ 1–1.5 mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈ 50–25 μm–rad with an upper limit on the longitudinal emittance of ≈ 76 mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of low energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25–30 T and low momentum muon beam starting at 135 MeV/c and gradually decreasing. The cooling channel design presented here is the first to reach ≈ 50 micron scale emittance beam. As a result, we present the channel’s optimized design parameters including the focusingmore » solenoid fields, absorber parameters and the transverse and longitudinal matching.« less","PeriodicalId":20072,"journal":{"name":"Physical Review Special Topics-accelerators and Beams","volume":"30 1","pages":"091001"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Special Topics-accelerators and Beams","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVSTAB.18.091001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈ 300 μm–rad in transverse and ≈ 1–1.5 mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈ 50–25 μm–rad with an upper limit on the longitudinal emittance of ≈ 76 mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of low energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25–30 T and low momentum muon beam starting at 135 MeV/c and gradually decreasing. The cooling channel design presented here is the first to reach ≈ 50 micron scale emittance beam. As a result, we present the channel’s optimized design parameters including the focusingmore » solenoid fields, absorber parameters and the transverse and longitudinal matching.« less
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB), is a peer reviewed, purely electronic journal, distributed without charge to readers and funded by contributions from national laboratories. It covers the full range of accelerator science and technology: subsystem and component technologies, beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron radiation production, spallation neutron sources, medical therapy, and intense beam applications.