Joint Separation and Dereverberation of Reverberant Mixtures with Multichannel Variational Autoencoder

S. Inoue, H. Kameoka, Li Li, Shogo Seki, S. Makino
{"title":"Joint Separation and Dereverberation of Reverberant Mixtures with Multichannel Variational Autoencoder","authors":"S. Inoue, H. Kameoka, Li Li, Shogo Seki, S. Makino","doi":"10.1109/ICASSP.2019.8683497","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with a multichannel source separation problem under a highly reverberant condition. The multichan- nel variational autoencoder (MVAE) is a recently proposed source separation method that employs the decoder distribu- tion of a conditional VAE (CVAE) as the generative model for the complex spectrograms of the underlying source sig- nals. Although MVAE is notable in that it can significantly improve the source separation performance compared with conventional methods, its capability to separate highly rever- berant mixtures is still limited since MVAE uses an instan- taneous mixture model. To overcome this limitation, in this paper we propose extending MVAE to simultaneously solve source separation and dereverberation problems by formulat- ing the separation system as a frequency-domain convolutive mixture model. A convergence-guaranteed algorithm based on the coordinate descent method is derived for the optimiza- tion. Experimental results revealed that the proposed method outperformed the conventional methods in terms of all the source separation criteria in highly reverberant environments.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"16 1","pages":"96-100"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we deal with a multichannel source separation problem under a highly reverberant condition. The multichan- nel variational autoencoder (MVAE) is a recently proposed source separation method that employs the decoder distribu- tion of a conditional VAE (CVAE) as the generative model for the complex spectrograms of the underlying source sig- nals. Although MVAE is notable in that it can significantly improve the source separation performance compared with conventional methods, its capability to separate highly rever- berant mixtures is still limited since MVAE uses an instan- taneous mixture model. To overcome this limitation, in this paper we propose extending MVAE to simultaneously solve source separation and dereverberation problems by formulat- ing the separation system as a frequency-domain convolutive mixture model. A convergence-guaranteed algorithm based on the coordinate descent method is derived for the optimiza- tion. Experimental results revealed that the proposed method outperformed the conventional methods in terms of all the source separation criteria in highly reverberant environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多声道变分自编码器混响混响的联合分离与去噪
本文研究了高混响条件下的多通道源分离问题。多通道变分自编码器(MVAE)是近年来提出的一种信号源分离方法,它利用条件变分自编码器(CVAE)的解码器分布作为源信号复杂谱图的生成模型。尽管与传统方法相比,MVAE可以显著提高源分离性能,但由于MVAE使用的是瞬时混合模型,因此其分离高度不稳定混合物的能力仍然有限。为了克服这一限制,本文提出扩展MVAE,通过将分离系统表述为频域卷积混合模型来同时解决源分离和去噪问题。提出了一种基于坐标下降法的收敛保证优化算法。实验结果表明,在高混响环境下,该方法在所有声源分离指标上都优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1