Master of Puppets: Cooperative Multitasking for In Situ Processing

D. Morozov, Z. Lukic
{"title":"Master of Puppets: Cooperative Multitasking for In Situ Processing","authors":"D. Morozov, Z. Lukic","doi":"10.1145/2907294.2907301","DOIUrl":null,"url":null,"abstract":"Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. In this paper, we present a novel design for running multiple codes in situ: using coroutines and position-independent executables we enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. We present Henson, an implementation of our design, and illustrate its versatility by tackling analysis tasks with different computational requirements. Our design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The presented techniques can also be integrated into other in situ frameworks.","PeriodicalId":20515,"journal":{"name":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2907294.2907301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. In this paper, we present a novel design for running multiple codes in situ: using coroutines and position-independent executables we enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. We present Henson, an implementation of our design, and illustrate its versatility by tackling analysis tasks with different computational requirements. Our design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The presented techniques can also be integrated into other in situ frameworks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木偶大师:协作多任务就地处理
现代科学和工程模拟跟踪数十亿元素的时间演化。对于如此大的运行,存储大部分时间步以供以后分析并不是一个可行的策略。当模拟数据还在内存中时,分析模拟数据的效率要高得多。在本文中,我们提出了一种新的原位运行多个代码的设计:使用协程和位置无关的可执行文件,我们实现了模拟和分析之间的协作多任务处理,允许相同的可执行文件对模拟输出进行后处理,以及在原位和传输中动态地处理它。我们介绍了Henson,我们设计的一个实现,并通过处理不同计算需求的分析任务来说明它的多功能性。我们的设计与现有的框架有很大的不同,并提供了一种在现代超级计算机上集成多个代码的有效和健壮的方法。所提出的技术也可以集成到其他现场框架中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote Lecture : Learning Representations: Opportunities for Parallel and Distributed Computing Keynote Lecture : Gradient compression for efficient distributed deep learning Keynote Lecture : Neural circuit policies Keynote Lecture : Towards Robust, Large-scale Concurrent and Distributed Programming The Supercomputer "Fugaku" and Arm-SVE enabled A64FX processor for energy-efficiency and sustained application performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1