Spectral Decomposition Made Simple

S. Munadi, H. Purba
{"title":"Spectral Decomposition Made Simple","authors":"S. Munadi, H. Purba","doi":"10.29017/scog.32.2.838","DOIUrl":null,"url":null,"abstract":"Spectral decomposition enables the resolution of seismic data to be improved significantly yielding a new possibility to map thin layers such channel sands and any other stratigraphic features. It has also been used in reservoir characterization. There are three methods for implementing spectral decomposition i.e., The Short Time Fourier Transform, the Continuous Wavelet Transform and the Matching Pursuit Decomposition. Among three of them, the Matching Pursuit Decomposition seems to be the most sophisticated one. It gives the best resolution among them. A simple and logical approach for explaining the spectral decomposition methods together with real data examples are presented in this paper by avoiding complex mathematical formulation.","PeriodicalId":21649,"journal":{"name":"Scientific Contributions Oil and Gas","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Contributions Oil and Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29017/scog.32.2.838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spectral decomposition enables the resolution of seismic data to be improved significantly yielding a new possibility to map thin layers such channel sands and any other stratigraphic features. It has also been used in reservoir characterization. There are three methods for implementing spectral decomposition i.e., The Short Time Fourier Transform, the Continuous Wavelet Transform and the Matching Pursuit Decomposition. Among three of them, the Matching Pursuit Decomposition seems to be the most sophisticated one. It gives the best resolution among them. A simple and logical approach for explaining the spectral decomposition methods together with real data examples are presented in this paper by avoiding complex mathematical formulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简化光谱分解
光谱分解可以显著提高地震数据的分辨率,从而为绘制薄层(如水道砂和任何其他地层特征)提供了新的可能性。它也被用于储层表征。实现光谱分解的方法有三种,即短时傅里叶变换、连续小波变换和匹配追踪分解。其中,匹配追踪分解似乎是最复杂的一种。它是其中分辨率最高的。本文避免了复杂的数学公式,结合实际数据实例,给出了一种简单合理的方法来解释谱分解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
SYNTHESIS AND EVALUATION OF SULPHONYL BORATE ESTER AS GREASE ADDITIVE Integrated Approach to Investigate the Potential of Asphalt/Tar Sand on Buton Island, Indonesia Comparative Study of Plug and Abandonment Using Balanced Plug Cementing Method: Case Study of Well “NV-01” Field “NS” The Comparation of Water Saturation Approaches to Reveal a Low Resistivity Reservoir Potential Case in Gumai Formation, South Sumatra Basin The 3D Seismic Survey Design of South Walio Offshore, Indonesia: Optimizing the 3D Survey Design Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1