Model-based Dynamic Pose Graph SLAM in Unstructured Dynamic Environments

Amy Deeb, M. Seto, Yajun Pan
{"title":"Model-based Dynamic Pose Graph SLAM in Unstructured Dynamic Environments","authors":"Amy Deeb, M. Seto, Yajun Pan","doi":"10.1109/ICAR46387.2019.8981632","DOIUrl":null,"url":null,"abstract":"Navigation in dynamic environments is a challenge for autonomous vehicles operating without prior maps or global position references. This poses high risk to vehicles that perform scientific studies and monitoring missions in marine Arctic environments characterized by slowly moving sea ice with few truly static landmarks. Whereas mature simultaneous localization and mapping (SLAM) approaches assume a static environment, this work extends pose graph SLAM to spatiotemporally evolving environments. A novel model-based dynamic factor is proposed to capture a landmark's state transition model - whether the state be kinematic, appearance or otherwise. The structure of the state transition model is assumed to be known a priori, while the parameters are estimated on-line. Expectation maximization is used to avoid adding variables to the graph. Proof-of-concept results are shown in small- and medium-scale simulation, and small-scale laboratory environments for a small quadrotor. Preliminary laboratory validation results shows the effect of mechanical limitations of the quadrotor platform and increased uncertainties associated with the model-based dynamic factors on the SLAM estimate. Simulation results are encouraging for the application of model-based dynamic factors to dynamic landmarks with a constant-velocity kinematic model.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"78 1","pages":"123-128"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Navigation in dynamic environments is a challenge for autonomous vehicles operating without prior maps or global position references. This poses high risk to vehicles that perform scientific studies and monitoring missions in marine Arctic environments characterized by slowly moving sea ice with few truly static landmarks. Whereas mature simultaneous localization and mapping (SLAM) approaches assume a static environment, this work extends pose graph SLAM to spatiotemporally evolving environments. A novel model-based dynamic factor is proposed to capture a landmark's state transition model - whether the state be kinematic, appearance or otherwise. The structure of the state transition model is assumed to be known a priori, while the parameters are estimated on-line. Expectation maximization is used to avoid adding variables to the graph. Proof-of-concept results are shown in small- and medium-scale simulation, and small-scale laboratory environments for a small quadrotor. Preliminary laboratory validation results shows the effect of mechanical limitations of the quadrotor platform and increased uncertainties associated with the model-based dynamic factors on the SLAM estimate. Simulation results are encouraging for the application of model-based dynamic factors to dynamic landmarks with a constant-velocity kinematic model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非结构化动态环境中基于模型的动态姿态图SLAM
对于没有事先地图或全球位置参考的自动驾驶汽车来说,在动态环境中导航是一个挑战。这对在北极海洋环境中执行科学研究和监测任务的车辆构成了高风险,北极海洋环境的特点是海冰缓慢移动,几乎没有真正的静态地标。虽然成熟的同时定位和映射(SLAM)方法假设一个静态环境,但这项工作将姿态图SLAM扩展到时空变化的环境。提出了一种新的基于模型的动态因子来捕捉地标的状态转换模型——无论是运动状态、外观状态还是其他状态。假设状态转移模型的结构是先验已知的,而参数是在线估计的。期望最大化用于避免向图中添加变量。概念验证结果显示在中小规模的模拟,以及小型四旋翼的小型实验室环境。初步的实验室验证结果表明,四旋翼平台的机械限制以及与基于模型的动态因素相关的不确定性增加对SLAM估计的影响。仿真结果为将基于模型的动态因子应用于等速运动模型的动态地标具有鼓舞人心的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Domain Randomization Techniques for Transfer Learning Robotito: programming robots from preschool to undergraduate school level A Novel Approach for Parameter Extraction of an NMPC-based Visual Follower Model Automated Conflict Resolution of Lane Change Utilizing Probability Collectives Estimating and Localizing External Forces Applied on Flexible Instruments by Shape Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1