Performance analysis of least squares algorithm for multivariable stochastic systems

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, CYBERNETICS Kybernetika Pub Date : 2023-03-10 DOI:10.14736/kyb-2023-1-0028
Ziming Wang, Yiming Xing, Xinghua Zhu
{"title":"Performance analysis of least squares algorithm for multivariable stochastic systems","authors":"Ziming Wang, Yiming Xing, Xinghua Zhu","doi":"10.14736/kyb-2023-1-0028","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the parameter estimation problem for the multivariable system. A recursive least squares algorithm is studied by minimizing the accumulative prediction error. By employing the stochastic Lyapunov function and the martingale estimate methods, we provide the weakest possible data conditions for convergence analysis. The upper bound of accumulative regret is also provided. Various simulation examples are given, and the results demonstrate that the convergence rate of the algorithm depends on the parameter dimension and output dimension.","PeriodicalId":49928,"journal":{"name":"Kybernetika","volume":"29 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14736/kyb-2023-1-0028","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the parameter estimation problem for the multivariable system. A recursive least squares algorithm is studied by minimizing the accumulative prediction error. By employing the stochastic Lyapunov function and the martingale estimate methods, we provide the weakest possible data conditions for convergence analysis. The upper bound of accumulative regret is also provided. Various simulation examples are given, and the results demonstrate that the convergence rate of the algorithm depends on the parameter dimension and output dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量随机系统最小二乘算法的性能分析
本文研究多变量系统的参数估计问题。研究了一种最小化累计预测误差的递推最小二乘算法。利用随机Lyapunov函数和鞅估计方法,给出了收敛性分析的最弱数据条件。并给出了累计后悔的上界。仿真结果表明,该算法的收敛速度与参数维数和输出维数有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Kybernetika
Kybernetika 工程技术-计算机:控制论
CiteScore
1.30
自引率
20.00%
发文量
38
审稿时长
6 months
期刊介绍: Kybernetika is the bi-monthly international journal dedicated for rapid publication of high-quality, peer-reviewed research articles in fields covered by its title. The journal is published by Nakladatelství Academia, Centre of Administration and Operations of the Czech Academy of Sciences for the Institute of Information Theory and Automation of The Czech Academy of Sciences. Kybernetika traditionally publishes research results in the fields of Control Sciences, Information Sciences, Statistical Decision Making, Applied Probability Theory, Random Processes, Operations Research, Fuzziness and Uncertainty Theories, as well as in the topics closely related to the above fields.
期刊最新文献
Positive unknown inputs functional observers new design for positive linear systems Matrix representation of finite effect algebras A characterization of uninorms on bounded lattices via closure and interior operators Aggregation of fuzzy vector spaces An elementary proof of Marcellini Sbordone semicontinuity theorem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1