Software Fault Severity Prediction Using Git History Metrics and Commits

Herimanitra Ranaivoson, M. Badri
{"title":"Software Fault Severity Prediction Using Git History Metrics and Commits","authors":"Herimanitra Ranaivoson, M. Badri","doi":"10.17706/jsw.17.2.36-47","DOIUrl":null,"url":null,"abstract":"In this paper, we propose new software agnostic metrics extracted from Git history. We compared the proposed metrics to many traditional code-based metrics in terms of fault severity prediction. We used three Machine Learning Algorithms (Random Forest, SVM and Multilayer Perceptron) to build the prediction models. We used data (source code, source code metrics, fault severity information) collected from three different data sources. Results show that the proposed software agnostic metrics perform better in terms of fault severity prediction compared to traditional code-based metrics. They were able to achieve 84% of accuracy in fault severity prediction. We also introduced some terms extracted from commits and showed their effectiveness for fault severity classification.","PeriodicalId":11452,"journal":{"name":"e Informatica Softw. Eng. J.","volume":"387 1","pages":"36-47"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e Informatica Softw. Eng. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/jsw.17.2.36-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose new software agnostic metrics extracted from Git history. We compared the proposed metrics to many traditional code-based metrics in terms of fault severity prediction. We used three Machine Learning Algorithms (Random Forest, SVM and Multilayer Perceptron) to build the prediction models. We used data (source code, source code metrics, fault severity information) collected from three different data sources. Results show that the proposed software agnostic metrics perform better in terms of fault severity prediction compared to traditional code-based metrics. They were able to achieve 84% of accuracy in fault severity prediction. We also introduced some terms extracted from commits and showed their effectiveness for fault severity classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Git历史指标和提交的软件故障严重性预测
在本文中,我们提出了从Git历史中提取的新的软件不可知指标。在故障严重性预测方面,我们将提出的度量与许多传统的基于代码的度量进行了比较。我们使用了三种机器学习算法(随机森林、支持向量机和多层感知机)来构建预测模型。我们使用了从三个不同的数据源收集的数据(源代码、源代码度量、故障严重性信息)。结果表明,与传统的基于代码的度量相比,所提出的软件不可知度量在故障严重性预测方面表现更好。他们能够在故障严重程度预测中达到84%的准确率。我们还介绍了从提交中提取的一些术语,并展示了它们对故障严重性分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Performance-Based Compensation on Crowdsourced Human-Robot Interaction Experiments Accelerated Defect Discovery and Reliability Improvement through Risk-Prioritized Testing for Web Applications Idle Strategy of Smart Monkey to Enhance Testing Operable GUI Regions Accessibility-as-a-Service an Open-Source Reading Assistive Tool for Education Research on the Application of SAE ARP 4754A in the Development of High-Speed Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1