W. Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao, Chao Tian
{"title":"Parallelizing Sequential Graph Computations","authors":"W. Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao, Chao Tian","doi":"10.1145/3282488","DOIUrl":null,"url":null,"abstract":"This article presents GRAPE, a parallel GRAPh Engine for graph computations. GRAPE differs from prior systems in its ability to parallelize existing sequential graph algorithms as a whole, without the need for recasting the entire algorithm into a new model. Underlying GRAPE are a simple programming model and a principled approach based on fixpoint computation that starts with partial evaluation and uses an incremental function as the intermediate consequence operator. We show that users can devise existing sequential graph algorithms with minor additions, and GRAPE parallelizes the computation. Under a monotonic condition, the GRAPE parallelization guarantees to converge at correct answers as long as the sequential algorithms are correct. Moreover, we show that algorithms in MapReduce, BSP, and PRAM can be optimally simulated on GRAPE. In addition to the ease of programming, we experimentally verify that GRAPE achieves comparable performance to the state-of-the-art graph systems using real-life and synthetic graphs.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"21 1","pages":"1 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3282488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
This article presents GRAPE, a parallel GRAPh Engine for graph computations. GRAPE differs from prior systems in its ability to parallelize existing sequential graph algorithms as a whole, without the need for recasting the entire algorithm into a new model. Underlying GRAPE are a simple programming model and a principled approach based on fixpoint computation that starts with partial evaluation and uses an incremental function as the intermediate consequence operator. We show that users can devise existing sequential graph algorithms with minor additions, and GRAPE parallelizes the computation. Under a monotonic condition, the GRAPE parallelization guarantees to converge at correct answers as long as the sequential algorithms are correct. Moreover, we show that algorithms in MapReduce, BSP, and PRAM can be optimally simulated on GRAPE. In addition to the ease of programming, we experimentally verify that GRAPE achieves comparable performance to the state-of-the-art graph systems using real-life and synthetic graphs.