PVC Recognition for Wearable ECGs Using Modified Frequency Slice Wavelet Transform and Convolutional Neural Network

Zhongyao Zhao, Xingyao Wang, Zhipeng Cai, Jianqing Li, Chengyu Liu
{"title":"PVC Recognition for Wearable ECGs Using Modified Frequency Slice Wavelet Transform and Convolutional Neural Network","authors":"Zhongyao Zhao, Xingyao Wang, Zhipeng Cai, Jianqing Li, Chengyu Liu","doi":"10.23919/CinC49843.2019.9005872","DOIUrl":null,"url":null,"abstract":"Progress in wearable techniques makes the long-term daily electrocardiogram (ECG) monitoring possible. Premature ventricular contraction (PVC) is one of the most common cardiac arrhythmias. This study proposed a method by combining the modified frequency slice wavelet transform (MFSWT) and convolutional neural network (CNN). Training data are from the 2018 China physiological signal challenge (934 PVC and 906 non-PVC recordings). The first 10-s ECG waveforms in each recording were transformed into 2-D time-frequency images (frequency range of 0-50 Hz and size of 300 × 100) using MFSWT. A 25-layer CNN structure was constructed, which includes five convolution layers with kernel size of 3×3, five dropout layers, five ReLU layers, five maximum pooling layers with kernel size of 2 × 2, a flatten layer, two fully connected layers, as well as the input and output layers. Test data were recorded from 12-lead Smart ECG vests, including 775 PVC and 742 non-PVC recordings. Results showed that, the proposed method achieved a high accuracy of 97.89% for PVC/non-PVC episodes classification, indicating that the combination of MFSWT and CNN provides new insight to accurately identify PVC from the wearable ECG recordings.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"159 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Progress in wearable techniques makes the long-term daily electrocardiogram (ECG) monitoring possible. Premature ventricular contraction (PVC) is one of the most common cardiac arrhythmias. This study proposed a method by combining the modified frequency slice wavelet transform (MFSWT) and convolutional neural network (CNN). Training data are from the 2018 China physiological signal challenge (934 PVC and 906 non-PVC recordings). The first 10-s ECG waveforms in each recording were transformed into 2-D time-frequency images (frequency range of 0-50 Hz and size of 300 × 100) using MFSWT. A 25-layer CNN structure was constructed, which includes five convolution layers with kernel size of 3×3, five dropout layers, five ReLU layers, five maximum pooling layers with kernel size of 2 × 2, a flatten layer, two fully connected layers, as well as the input and output layers. Test data were recorded from 12-lead Smart ECG vests, including 775 PVC and 742 non-PVC recordings. Results showed that, the proposed method achieved a high accuracy of 97.89% for PVC/non-PVC episodes classification, indicating that the combination of MFSWT and CNN provides new insight to accurately identify PVC from the wearable ECG recordings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进频率切片小波变换和卷积神经网络的可穿戴心电图PVC识别
可穿戴技术的进步使得长期的日常心电图监测成为可能。室性早搏是最常见的心律失常之一。本研究提出了一种将改进的频片小波变换(MFSWT)与卷积神经网络(CNN)相结合的方法。训练数据来自2018年中国生理信号挑战赛(934个PVC和906个非PVC记录)。利用MFSWT将每次记录的前10s心电波形转换为二维时频图像(频率范围为0 ~ 50hz,大小为300 × 100)。构建了一个25层的CNN结构,其中包括5个卷积层(核大小为3×3)、5个dropout层、5个ReLU层、5个最大池化层(核大小为2 × 2)、1个flatten层、2个全连接层以及输入和输出层。测试数据记录在12导联智能ECG背心上,包括775条PVC和742条非PVC记录。结果表明,该方法对PVC/非PVC发作的分类准确率达到97.89%,表明MFSWT与CNN的结合为从可穿戴ECG记录中准确识别PVC提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automated Approach Based on a Convolutional Neural Network for Left Atrium Segmentation From Late Gadolinium Enhanced Magnetic Resonance Imaging Multiobjective Optimization Approach to Localization of Ectopic Beats by Single Dipole: Case Study Sepsis Prediction in Intensive Care Unit Using Ensemble of XGboost Models A Comparative Analysis of HMM and CRF for Early Prediction of Sepsis Blocking L-Type Calcium Current Reduces Vulnerability to Re-Entry in Human iPSC-Derived Cardiomyocytes Tissue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1