F. Fang, Weiliang Chen, Kun Liu, Nianfeng Liu, R. Suo, Tian-chu Li
{"title":"Design of the new NIM6 fountain with collecting atoms from a 3D MOT loading optical molasses","authors":"F. Fang, Weiliang Chen, Kun Liu, Nianfeng Liu, R. Suo, Tian-chu Li","doi":"10.1109/FCS.2015.7138891","DOIUrl":null,"url":null,"abstract":"We report the design of a new cesium fountain clock NIM6, which is under construction in NIM. Besides some improvements on the vacuum system, Ramsey cavity and microwave synthesizer to reduce the Type B uncertainty. Another major improvement on NIM6 is to collect more atoms from a MOT loading optical molasses and optical pumping to get a better signal to noise ratio at the detection. The atom distribution will be more uniform compared with a 2D MOT loading optical molasses, and the diameter of the cloud can be adjusted by the intensity and detuning of lights during the post cooling to keep the collisional-induced frequency shift low. The atom numbers can be further increased by a new de-pumping - optical pumping procedure to pump atoms to the |F=3, mF=0> clock state directly. With a new cryogenic sapphire oscillator (CSO) based frequency synthesizer, NIM6 is aiming to reach the quantum projection noise, thus leading to a reduced Type A uncertainty compared with NIM5.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":"52 1","pages":"492-494"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We report the design of a new cesium fountain clock NIM6, which is under construction in NIM. Besides some improvements on the vacuum system, Ramsey cavity and microwave synthesizer to reduce the Type B uncertainty. Another major improvement on NIM6 is to collect more atoms from a MOT loading optical molasses and optical pumping to get a better signal to noise ratio at the detection. The atom distribution will be more uniform compared with a 2D MOT loading optical molasses, and the diameter of the cloud can be adjusted by the intensity and detuning of lights during the post cooling to keep the collisional-induced frequency shift low. The atom numbers can be further increased by a new de-pumping - optical pumping procedure to pump atoms to the |F=3, mF=0> clock state directly. With a new cryogenic sapphire oscillator (CSO) based frequency synthesizer, NIM6 is aiming to reach the quantum projection noise, thus leading to a reduced Type A uncertainty compared with NIM5.