{"title":"Dictionary Learning for Hyperspectral Video Compressive Sensing","authors":"L. Carin","doi":"10.1364/FIO.2012.FM4C.5","DOIUrl":null,"url":null,"abstract":"The proposed approach is capable of efficiently reconstructing large hyperspectral datacubes, including hyperspectral video. Comparisons are made between the proposed algorithm and other techniques employed in compressive sensing, dictionary learning and matrix factorization.","PeriodicalId":91683,"journal":{"name":"Frontiers in optics. Annual Meeting of the Optical Society of America","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in optics. Annual Meeting of the Optical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/FIO.2012.FM4C.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The proposed approach is capable of efficiently reconstructing large hyperspectral datacubes, including hyperspectral video. Comparisons are made between the proposed algorithm and other techniques employed in compressive sensing, dictionary learning and matrix factorization.